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ABSTRACT
In this paper, we present an algorithm for delay minimization of
interconnect trees by simultaneous buffer insertion/sizing and
wire sizing. The algorithm integrates the quadratic programming
approach to handle a wire branch [1] into the dynamic
programming framework [2]. Our experimental results show that
our hybrid dynamic/quadratic programming algorithm is faster,
more accurate, and uses much less memory than the pure dynamic
programming approach.

1. INTRODUCTION
Interconnect optimization of VLSI circuits has received more and
more attention in recent years. This is mainly because of the
increasing operation frequency, the shrinking geometry of new
technologies, and the increasing area of VLSI circuits. According
to the SIA roadmap [3], interconnect delay has become the
dominating factor in determining the system performance of the
0.25 μm technology. Even with the help of copper and low
dielectric constant (κ) materials, interconnect delay is still likely
to dominate the chip performance beyond 0.18 μm technology.
Therefore, we can expect the significance of interconnect delay to
rapidly increase in near future. Buffer insertion, buffer sizing and
wire sizing are effective techniques to reduce interconnect delay.
This paper presents an algorithm for delay minimization of
interconnect trees by simultaneous buffer insertion, buffer sizing
and wire sizing.

Lillis, Cheng and Lin [2] presented a dynamic programming (DP)
algorithm for the interconnect tree problem. Their algorithm is a
generalization of the dynamic programming algorithm for buffer
insertion by van Ginneken [4]. The algorithm was later extended
to handle power dissipation and incorporate signal slew into the
buffer delay model [5]. However, the dynamic programming
algorithms in [2] and [5] are slow and memory intensive. The
reason is that in order to obtain an accurate solution, the
algorithms need to divide the wires into short segments. This
results in a large number of wire segments. For each wire
segment, the set of all possible solutions for the whole
downstream subtree has to be computed and stored. Hence, it

takes a lot of time and memory to handle and store the solutions
for all segments. To solve this shortcoming, Alpert and Devgan
[6] tried to reduce the run time by a wire segmenting technique.
The idea is to trade off run time with solution quality by using a
coarser wire segmentation. Lai and Wong [7] tried to reduce the
memory usage by a recomputation technique. Their idea is to
trade memory with run time by recomputing instead of storing
values.

The algorithm presented in this paper is accurate, fast and
economical in memory usage. The algorithm combines the
dynamic programming framework in [2] and the quadratic
programming (QP) approach for interconnect optimization of a
wire by Chu and Wong [1]. As shown in [1], the problem of
simultaneous buffer insertion and wire sizing for a wire can be
formulated as a convex quadratic program, and the convex
quadratic program can be solved extremely efficiently by the
active set method. In this paper, we show that instead of being
divided into numerous segments, each wire branch can be handled
as a whole by a similar approach in [1]. Therefore, the set of
possible solutions of a wire branch can be found in a much shorter
time, and only one set per wire needs to be stored. To handle the
tree structure (i.e., to combine the sets of solutions of adjacent
wires together), dynamic programming is used. We use the name
Dynamic/Quadratic Programming (DQP) to refer to our hybrid
algorithm.

In addition, we present a constant reusing technique to
speedup the solving of quadratic programs. To process the edges
of the tree, a large number of quadratic programs need to be
solved. These quadratic programs are of the same form, except for
the difference in some parameters such as the downstream
capacitance and the wire length. We show that many constant
values computed in one quadratic program can be stored and
reused by other quadratic programs. This technique increases the
memory usage just moderately but reduces the run time
dramatically.

In this paper, the Elmore delay model [8] is used for delay
calculations. A wire segment is modeled as a π-type model as
shown in Figure 1.

Figure 1. The model of a wire segment of length l and width h by
a π-type RC circuit. r0 is the unit wire resistance. c(h) is the wire
capacitance per unit length for a segment of width h. In this
paper, we assume that  c(h) is an increasing function.
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A buffer is modeled as a switch-level RC circuit as shown in
Figure 2.

Figure 2. The model of a buffer of size B by a switch-level RC
circuit. cB, rB, and dB are the input capacitance, output resistance
and the intrinsic delay.

The remainder of this paper is organized as follows. In
Section 2, we present the basic idea of the dynamic programming
approach in [2]. In Section 3, we present the quadratic
programming formulation for a wire in [1]. In Section 4, we
present our hybrid dynamic/quadratic programming algorithm.
We explain the modification needed in order to integrate the QP
formulation into the DP framework. We also present the active set
method and the constant reusing technique to solve the quadratic
programs. In Section 5, we present the experimental results. We
then conclude the paper in Section 6.

2. DP APPROACH
In this section, we outline the dynamic programming (DP)
technique for interconnect tree optimization in [2] and [5]. The
algorithms adapt a bottom-up dynamic programming approach to
minimize the maximum delay among all paths from source to
sinks.

The basic idea of the dynamic programming technique is to
build a new set of solutions for each segment based on the
solution sets of its subtrees by traversing the tree structure in a
bottom-up fashion. In their algorithms, instead of computing a
single solution for each subtree, a set of solutions where each
member contains a downstream capacitance and delay time pair
(c, t) is computed and kept. The reason for doing so is that the
optimal (c, t) combination for delay minimization cannot be
determined without the upstream resistance.

If there are two downstream branches for a node, each down-
stream branch will have a set of (c, t) pairs. These two sets can be
combined into a single set and pruned according to the pair
values. The pruned list will have c in increasing order and t in
decreasing order in their algorithm. If there are more than two
downstream branches for a certain node, this node can be broken
into several two downstream branch nodes with zero length in
between.

The main drawback of the pure dynamic programming is that
in order to obtain a solution with good quality, each wire has to be
divided into many small segments. This increases run time and
memory usage drastically.

3. QP APPROACH
In this section, we outline the quadratic programming (QP)
formulation of interconnect optimization for a single wire in [1].

We illustrate the idea by first considering wire sizing alone.
The extension to handle buffers is easy and will be presented
afterwards. [1] showed that the optimal wire shape can be
described by a non-increasing function. Therefore, the wire sizing
(WS) problem can be formulated as in Figure 3. Given wire length
L, driver resistance RD, load capacitance CL, a set H={h1,...,hn} of
n choices of wire width such that h1>...>hn , WS is to determine
the segment lengths l1,...,ln such that the delay from source to sink

is minimized. Note that this approach does not divided the wire
into numerous segments. The number of segments is equal to the
number of choices of segment width n, which is usually a small
number.

Figure 3. The wire sizing (WS) problem for a single interconnect
wire.

The problem WS can be formulated as follows. Let ci = c(hi)
for 1 ≤ i ≤ n. The Elmore delay D for this wire is
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Therefore, WS can be written as the following quadratic program:

CQP : Minimize 1/2lTΦl + ρTl
Subject to l1 + … + ln = L                    (1)

li ≥ 0  for  1 ≤ i ≤ n

It was proved in [1] that the Hessian matrix Φ of CQP is
positive definite. Hence CQP is convex and polynomial-time
solvable. Furthermore, [1] also proved that Φ-1 is tri-diagonal. In
general, convex quadratic programs can be solved efficiently by a
classical technique called active set method [9]. By making use of
the property that Φ-1 is tri-diagonal, each iteration of active set
method only takes O(n) time. As a result, [1] presented an optimal
algorithm to solve CQP which runs in O(n2) time in practice.
Since n is usually a small number, the algorithm is extremely
efficient in practice.

The extension of simultaneous buffer insertion and wire
sizing, as shown in [1], is straightforward. The corresponding
quadratic program has exactly the same form as CQP above. The
corresponding Hessian matrix is a block diagonal matrix such that
each block is just the matrix Φ for WS above. Hence it is positive
definite and has a tri-diagonal inverse. Therefore, the
corresponding quadratic program can also be solved optimally by
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an active set method based O(mn2) time algorithm, where m is the
number of buffers inserted.

Notice that the driver resistance RD is assumed to be known in
the QP formulation above. Therefore, it cannot be integrated into
the DP framework directly since the upstream resistance is not
known during the bottom-up dynamic programming traversal. The
modification needed is presented in the Section 4.2.

4. HYBRID DYNAMIC / QUADRATIC
PROGRAMMING (DQP) ALGORITHM

In this section, we introduce our hybrid dynamic/quadratic
programming (DQP) algorithm. We integrate the QP approach
into the DP framework in order to reduce run time and memory
usage. Instead of being divided into numerous small segments,
each wire in the interconnect tree is handled as a whole by the QP
approach. In Section 4.1, we first present a modified QP
formulation so that it can be integrated into the DP formulation.
In Section 4.2, we present the active set method to solve the QP
problem in Section 4.1. In Section 4.3, we present the modified
dynamic programming framework and the DQP algorithm. In
Section 4.4, we introduce the constant reusing technique to
speedup the solving of quadratic programs.

4.1 Modified Convex Quadratic Program
(MCQP)

In this subsection, we modify the quadratic program CQP in
Section 3 so that it can be integrated into the DP framework. We
call the resulting quadratic program the modified convex
quadratic program (MCQP). It is a building block of the DQP
algorithm to handle a single wire branch.

The main difference between MCQP and CQP is that we
ignore the driver resistance RD in CQP and we include the
upstream capacitance cU into our formulation. First, consider the
following new wire sizing problem (WS') for a wire branch as
shown in Figure 4. The wire length L, load capacitance cD, and the
set H={h1,...,hn} of wire width choices are given as before. In
addition, the delay time at the downstream node tD (i.e., the delay
time of the subtree at this node) and the capacitance seen from the
upstream node of the branch cU are also given. The objective is to
minimize the upstream delay time tU  by changing the segment
lengths l1,...,ln. In other words, given a list of (cD, tD) pairs at the
downstream node, MCQP can be used to find a list of (cU, tU)
pairs at the upstream node. This is similar to what the DP
approach does.

Figure 4. The new wire sizing problem (WS') for a single wire
branch in an interconnect tree.

Consider a particular (cD, tD) and cU combination. Let ci =
c(hi) for 1 ≤ i ≤ n. The delay tU for this wire branch is
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Therefore, WS' can be formulated as the following modified
convex quadratic program.

MCQP : Minimize tU  = 1/2lTΦl + ρTl + tD

Subject to l1 + … + ln = L
c1 l1+ … + cn ln + cD = cU        (2)
li ≥ 0  for  1 ≤ i ≤ n

Notice that the matrix Φ here is the same as the one in CQP.
Hence it is positive definite and has a tri-diagonal inverse.

As shown in the original QP approach in [1], the above
formulation can be extended easily to handle simultaneous buffer
insertion and wire sizing. For fixed (cD, tD) and cU values, each
combination of number of buffers and buffer sizes corresponds to
one instance of MCQP. However, if buffers of different sizes are
considered, many instances of MCQP need to be solved. Suppose
there are q different choices of buffer size in the buffer library and
m buffers are inserted. Then there are qm choices of buffer sizes,
and hence qm instances of MCQP to solve. The algorithm will be
slow if m is large.

In order to guarantee the number of buffers inserted in each
wire to be small, we divide each long wire into several wires
shorter than a critical length. The critical length is defined as the
maximum length such that at most one buffer is needed in the
optimal solution [10]. This length depends on the technology
parameters and the bounds on wire width and buffer size and can
be determined experimentally. Using this idea, for fixed (cD, tD)
and cU values, only 1+q instances (one instance for no buffer and
one instance for each of the q buffer sizes) need to be considered.
The simultaneous buffer insertion and wire sizing problem for one
buffer of size B is shown in Figure 5.

Figure 5. The simultaneous buffer insertion and wire sizing
problem.
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4.2 Extended Active Set Method (EASM)
In this subsection, we derive a very efficient algorithm to solve
MCQP based on the idea of active set method.

Active set method is a popular technique for solving quadratic
programming problems. It has been proved to be efficient in
practice. The idea underlying the active set method for solving a
general convex quadratic program is to partition the inequality
constraints into two groups: active and inactive. In each iteration,
the active inequality constraints are treated as equality constraints
and the inactive constraints are essentially ignored. Then, the
resulting equality constrained program is solved. If the solution is
infeasible with respect to the original program, some inactive
constraints will be added to the set of constraints. If the solution is
feasible but not optimal (i.e., some Lagrangian multipliers are
negative for the minimization problem), some constraints will be
removed from the current active set. The process is repeated until
the optimal solution is found. We give a brief outline on how to
solve QP by active set method in the following. Readers are
encouraged to read [9, Chapter 11] for more details of active set
method.

If a convex quadratic program consists of equality constraints
only, it is particularly easy to solve. Consider the following
program:

Minimize 1/2lTΦl + ρTl
Subject to Γl = b                                          (3)

Where Φ is positive definite and Γ is of full rank. Consider the
associated Lagrangian:

                    � (l , λ) = 1/2lTΦl + ρTl + λT (Γl − b)                   (4)
The Lagrange necessary conditions of optimality are ∂l(l, λ)/∂li =
0 and ∂l(l, λ)/∂λi = 0 for all i. The conditions can be written in
matrix form as follows:

Φl + ΓTλ + ρ  = 0
Γl − b             = 0                                     (5)

Since Φ is positive definite and Γ is of full rank, it can be shown
that the conditions can be uniquely solved:

λ  =  − (ΓΦ−1ΓT) −1 (ΓΦ−1ρ + b)
l   =  − Φ−1ΓTλ − Φ−1ρ                             (6)

CQP and MCQP consist of inequality constraints as well. It
has been shown in [1] that inequality constraints in CQP can be
handled efficiently by active set method. The same idea can be
applied to MCQP. The MCQP problem also has an extra equality
constraint on cU. The major difference between solving MCQP
and CQP is at least two wire segments need to be inactive at any
time in the active set method. This is because we have two
equality constraints (i.e., the total wire length constraint and the
upstream capacitance constraint) that need to be satisfied. To
ensure the feasibility of the solution, we need to start the active set
method with a feasible initial solution for vector l. Then, we
iteratively calculate a new solution l' which will be the new
direction to move l. The idea is to move l stepwise toward the
optimal solution and make sure that each step stays within the
feasible region. The algorithm EASM which we used to solve
MCQP is summarized in Figure 6.

4.3 The DQP Algorithm
The DP approach discussed in Section 2 is the basic framework of
our DQP algorithm. The DP idea is used to handle the tree
structure of interconnects ( i.e. , to combine the set of solutions of

Algorithm EASM (Extended Active Set Method)
1. Find an initial feasible solution for l.
2. Set the active set A = ∅.
3. Solve for l'  with respect to A as in CQP.
4. Calculate d = l' − l.
5. If (l' is not feasible)
6.     Calculate αk according to d and l (where αk is the step size
          which is selected to be as large as possible to maintain
          feasibility).
7.     Calculate new l = l + d αk.

8.     Add the l element which gives αk to A. Go back to step 3.
9. Else if (l' is feasible)
10.     If (d ≠ 0)
11.         Update l = l' and go back to step 3.
12.     Else if (d = 0)  /* local minimal reached */
13.         Solve for λ.
14.         If (λ < 0)   /* check for optimality */
15.             Drop all the l which correspond to negative λ from A.
16.             Go back to step 3.
17.         Else if (λ ≥ 0)
18.             Optimal l obtained.

Figure 6. The Algorithm EASM (Extended Active Set Method).

adjacent subtrees together). We do not divide the wires into
segments and handle the segments by dynamic programming.
Each wire branch is handled as a whole by the QP approach.

However, since we do not know the upstream resistance at a
node during the bottom-up traversal of the dynamic programming,
we need to consider many different cU values and calculate the
optimal delay tU corresponding to each cU value. In general,
except for the leaf nodes (the nodes which connect to sinks), each
wire branch can have more than one (cD, tD) pair at the
downstream node and a set of cU at the upstream node. Each
combination of cU and (cD, tD) forms a MCQP problem instance.

Let Nc be a user-defined parameter specifying the number of
different cU values used at each node. Let q be the number of
choices of buffer size. For each wire branch, there are 1+q cases
to consider (one case for no buffer and one case for each of the q
buffer sizes). For each case, the set of cU is chosen by first
determining an upper bound and a lower bound on the upstream
capacitance. Then Nc/(q+1) discrete values are selected evenly
from the range.

 After the root of the interconnect tree is reached, the
interconnect optimization solution can be constructed by a top-
down traversal. With the knowledge of the driver resistance, we
can select the best (c, t) pair at the root which results in minimum
delay time. The rest of the solution can be obtained by recursively
traversing the tree in a top-down manner and selecting the best (c,
t) pair at each node.

The DQP algorithm is summarized in Figure 7. In Section 4.4,
we introduce a constant reusing technique to speed up the solving
of MCQP instances in Step 3.

4.4 Constant Reusing Technique
In this subsection, we present a constant reusing technique to
speed up the DQP algorithm.

EASM can be applied directly in DQP to solve the MCQP
instances for all wires. Each  MCQP  instance can be solved very



Algorithm DQP (Hybrid Dynamic/Quadratic Programming)
1. Start from a leaf node.  /* the node which connect to a sink */
2. Append a branch of wire to the upstream of this node.
3. Apply EASM to calculate an upstream delay time tU for each
      selected upstream capacitance cU according to all available
      downstream delay time tD, and capacitance cD.
4. If (current node is the root)
5.      Search for the smallest delay according to the driver
          resistance and (c, t) pair set at the root.
6.      Construct the solution top-down and then exit the program.
7. Else if (number of children of a node = 2)
8.      Merge the two (c, t) lists and prune redundant (c, t) pairs.
9.      Go back to step 2.
10. Else if (number of children of a node = 1)
11.     (cD, tD) set of the current node = (cU, tU) set of the child of
          the current node.
12.     Go back to step 2.

Figure 7. The Hybrid Dynamic/Quadratic Programming
Algorithm.

efficiently by EASM. However, for each wire branch, there are
many (cD, tD) pairs at the downstream node, many cU values at the
upstream node, and several choices of buffer size. Therefore, there
can be a lot of MCQP instances. If those MCQP instances are
solved independently by EASM, experimental results show that
the DQP approach only has very limited improvement over the
pure DP approach. However, we recognize that all MCQP
instances are the same except that the parameters L, cU, cD and tD

are different. Many constant values computed in one MCQP
instance can be stored and reused by other MCQP instances.

By observing the equations (2) and (6), we recognize that l, λ
and tU can be expressed by three separate linear functions in terms
of downstream capacitance cD, total length of the wire branch L,
upstream capacitance cU, and downstream delay time tD as shown
in (7).

λ = vλ1cD + vλ2L + vλ3cU ,         l = vl1cD + vl2L + vl3cU ,             (7)

and    tU  = vt1 cU
2 + vt2L

2 + vt3cD
2 + vt4 cUL + vt5LcD

 + vt6cDcU + tD

All vti's, vλi's, and vti's in (7) are independent of L, cU, cD and
tD. Their values only depend on the electrical parameters (e.g., r0,
c0, and cf) and the set of wire widths being used. In the active set
method, some segments are set to inactive at each iteration. Hence
the set of wire widths being used may only be a subset of H. So
when a particular set of wire widths is first used in some iteration
of the active set method, the constants vti's, vλi's, and vti's can be
computed and stored. When the same set of wire widths is used
again in another iteration, the constant stored can be reused. This
constant reusing technique only increases the memory usage
moderately but reduces the run time dramatically. Please refer to
Appendix for the equations to calculate constants vti's, vλi's, and
vti's.

5. EXPERIMENTAL RESULTS
The DQP algorithm is implemented as a C program. We test the
program on a PC with a 500 MHz Pentium III processor and 256
MB of memory. We use the parameters for the 0.18 μm
technology listed in [11]. The results are compared with the pure
DP approach. We use 6 trees with 2 to 100 sinks. The length of
the tree wires range from 1000 μm to 15000 μm.

Figure 8 shows the delay time of the solutions obtained by
DQP verses the number of upstream capacitance choices Nc on the

input tree with 10 sinks. The results in Figure 8 show that Nc does
not need to be selected as a large value to obtain a good solution
quality. Figure 9 shows a similar chart for the pure DP with the
same input tree. The ls is the segment length in μm that we used in
DP to divide a wire branch into equal-length segments.

For the purpose of comparison, we set the parameters ls and
Nc such that the quality of solution for DP and DQP are similar.
We set ls = 200 and Nc = 90 in our experiment. The experimental
results are shown in Table 1.

DP (ls = 200) DQP  (Nc = 90)# of
Sinks

Optimal
Delay
(ps)

Run
Time
(sec.)

Memory
Used
(Mb)

Delay
(ps)

Run
Time
(sec.)

Memory
Used
(Mb)

Delay
(ps)

2 293.72 1.77 6.17 294.70 0.27 0.00+0.9 295.59
5 666.60 6.44 22.12 668.83 0.76 0.01+0.9 668.53

10 1232.95 12.66 42.93 1237.34 1.41 0.02+0.9 1233.80
15 1430.64 20.82 70.35 1435.33 1.95 0.03+0.9 1431.50
30 1937.31 38.20 129.95 1939.95 4.09 0.05+0.9 1937.86

100 2256.82 N/A N/A N/A 13.28 0.17+0.9 2265.29

Table 1. The comparison between DP and DQP.

The estimated optimal delay value is obtained by setting Nc to
1800 in DQP. In our experiment, DP with ls = 200 cannot be run
successfully for the input file containing 100 sink nodes on the PC
we used. We estimate the reason is because of memory limitations
of the PC. The memory data column of DQP contains two parts.
The first part is the memory dynamically allocated for (c, t) pairs.
The second part is the memory used to store the constants being
reused.

 Our experimental results suggest that DQP is better than DP
in run time, memory, and accuracy (except for the delay of the
smallest input tree). For small problems and for the same quality
of solution, the run time advantage of DQP over DP is relatively
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less. This is because of the overhead and the lower constant
reusing rate of the EASM algorithm. However, for bigger
problems, the run time advantage of DQP over DP is more
significant.

We also observe that the constant reusing technique can
enhance the efficiency of our algorithm significantly. By applying
the constant reusing technique, the run time of our program can be
reduced by around 75% compared to the implementation without
constant reusing technique.

6. DISCUSSION
In this paper, only the timing optimization of an interconnect tree
is presented. However, interconnect power and area optimization
can be easily applied to the same algorithm framework.

In general, a better circuit can be obtained by applying
interconnect optimization in a larger scale at the circuit level. This
research can only be applied to an interconnect tree. For future
research, it will be interesting to extend the work to consider
simultaneous wire sizing, buffer insertion, buffer sizing, and gate
sizing to a whole circuit.
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APPENDIX
Equations for Constant Reusing Technique

The wire sizing problem is used below to illustrate the idea.
Extension to include buffer insertion is easy. Consider the
following convex quadratic program formulation corresponding to
an active set A for the active set method.

Minimize 1/2lA
T ΦA lA + ρA

TlA

Subject to ΓA lA = b                             (a1)

From (6) and (a1), we can derive the following equations.

        θij is the element in ΦA
-1.

lA  =  α cD + β L + γ cU                                                           (a3)
where

tU = 1/2 lA
TΦAlA + cD σTlA + tD

    = (1/2 αTΦAα + σ Tα) cD
2 + (1/2 βTΦAβ) L2 + (1/2 γTΦAγ) cU

2

        + (αTΦAγ + σ Tγ) cU cD + (αTΦAβ + σ Tβ) cD L

        + (βTΦAγ) cU L + tD                                                                         (a4)

where
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