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ABSTRACT

In interconnect optimization by wire�sizing� minimizing
weighted sink delay has been shown to be the key prob�
lem� Wire�sizing with many important objectives such as
minimizing total area subject to delay bounds or minimizing
maximum delay can all be reduced to solving a sequence of
weighted sink delay problems by Lagrangian relaxation 	�� 
��
GWSA� �rst introduced in 	�� for discrete wire�sizing and
later extended in 	�� to continuous wire�sizing� is a greedy
wire�sizing algorithm for the weighted sink delay problem�
Although GWSA has been experimentally shown to be very
e�cient� no mathematical analysis on its convergence rate
has ever been reported� In this paper� we consider GWSA
for continuous wire sizing� We prove that GWSA converges
linearly to the optimal solution� which implies that the run
time of GWSA is linear with respect to the number of wire
segments for any �xed precision of the solution� Moreover�
we also prove that this is true for any starting solution� This
is a surprising result because previously it was believed that
in order to guarantee convergence� GWSA had to start from
a solution in which every wire segment is set to the mini�
mum �or maximum� possible width� Our result implies that
GWSA can use a good starting solution to achieve faster
convergence� We demonstrate this point by showing that
the minimization of maximum delay using Lagrangian relax�
ation can be speed up by ������

�� INTRODUCTION

With the evolution of VLSI fabrication technology� intercon�
nect delay has become the dominant factor in deep submi�
cron design� In many systems designed today� as much as
�� to �� of clock cycle are consumed by interconnect de�
lay 	��� As technology continues to scale down� we expect the
signi�cance of interconnect delay will further increase in the
near future� Wire�sizing has been shown to be an e�ective
technique for interconnect optimization� Many works have
been done during the past few years� See 	�� for a survey�
In particular� the problem of minimizing weighted sink

delay has drawn a lot of attention� Basically� a routing tree
with a source� a set of sinks and a set of wire segments is
given� Associated with each sink is a non�negative weight
representing the criticality of the sink� The problem is to de�
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termine the width of each wire segment so that the weighted
sum of the delay from the source to the sinks is minimized�
Solving this problem is a key to solve problems with many
other important objectives such as minimizing total area sub�
ject to delay bounds or minimizing maximum delay� It is
because 	�� 
� have shown that those problems can all be re�
duced by Lagrangian relaxation to a sequence of weighted
sink delay problems� So having e�cient algorithms for the
weighted sink delay problem is very important for intercon�
nect optimization�

For the problem of minimizing weighted sink delay un�
der Elmore delay model 	���� a widely used technique is op�
timal local re�sizing� The basic idea is to iteratively and
greedily re�size the wire segments� In each iteration� the
wire segments in the tree are examined one by one� When
a wire segment is examined� it is re�sized optimally while
keeping the widths of all other segments �xed� This tech�
nique was �rst introduced in 	�� and was later extended to
many other wire� bu�er� gate� driver and�or transistor sizing
problems 	�� �� �� �� �� �� ���

In 	��� discrete wire�sizing �i�e� the segment widths must
be chosen from a given set of discrete choices� was considered�
The proposed algorithm was called GWSA �Greedy Wire�
Sizing Algorithm�� GWSA does not give the optimal solution
directly as it can converge to non�optimal solutions� Rather�
GWSA is used to get lower and upper bounds on the segment
widths of the optimal solution� Then dynamic programming
technique is used to �nd the optimal solution among all the
possible solutions satisfying the lower and upper bounds� As
the lower and upper bounds obtained by GWSA are close to
each other in most cases� the dynamic programming step is
usually very e�cient�

In 	��� GWSA was extended to continuous wire�sizing �i�e�
the segment widths can be from a continuous range of real
numbers�� It was proved in 	�� that for continuous wire�
sizing� GWSA always converges to the optimal solution� pro�
vided that all segments are set to their minimum �or max�
imum� possible widths for the starting solution� However�
the convergence rate of GWSA is not known�

In this paper� we analyze the convergence of GWSA for
continuous wire�sizing� One of our contributions is we prove
that the convergence rate of GWSA is linear� This implies
that the run time of GWSA is O�n log �

�
� where n is the

number of wire segments and � speci�es the precision of the
solution �see Theorem ��� So GWSA runs in time linear to
n for a �xed precision�

For all previous algorithms using optimal local re�sizing�
the convergence always depends on the fact that the solu�
tion of optimal local re�sizing satis�es a special dominance
property 	��� That is if a wire�sizing solution is dominated
by the optimal solution �i�e� the width of every segment in
the solution is smaller than or equal to that in the optimal
solution�� then the solution after an optimal local re�sizing
of any segment will still be dominated by the optimal so�



lution� So if we start from a solution with every segment
set to its minimum possible width �this solution is obviously
dominated by the optimal solution�� then after any number
of optimal local re�sizing� the solution will still be dominated
by the optimal solution� In other words� for any segment� the
optimal width is always an upper bound to the width by opti�
mal local re�sizing� Since segment widths are non�decreasing
during optimal local re�sizing and are upper bounded� the
solution must converge �to a lower bound of the optimal so�
lution for discrete wire�sizing� and to the optimal solution for
continuous wire�sizing�� A similar property holds for wire�
sizing solutions which dominate the optimal solution�
Therefore� previously in order to guarantee convergence�

GWSA always sets all segments to their minimum �or max�
imum� possible widths for the starting solution� Another
contribution of this paper is we prove that for continuous
wire�sizing� GWSA always converges to the optimal solution
from any starting solution� This is done by proving the con�
vergence of GWSA without using dominance property� So by
using a good starting solution for GWSA� faster convergence
can be achieved�
This result on starting solution is particularly useful in

optimizing other objectives �e�g� minimizing total area sub�
ject to delay bounds or minimizing maximum delay� by La�
grangian relaxation� A problem with other objective can be
solved optimally by reducing it to a sequence of weighted sink
delay problems using the Lagrangian relaxation technique�
Previously� before solving each weighted sink delay problem�
in order to guarantee convergence� all segments are reset to
their minimum �or maximum� possible widths to form the
starting solution for GWSA� However� since two consecutive
weighted sink delay problems in the sequence are almost the
same �except that the sink weights are changed by a little
bit�� the optimal solution of the �rst weighted sink delay
problem is close to the optimal solution of the second one�
and hence a good starting solution to the second one� So it
is better not to reset the wire�sizing solution before solving
each weighted sink delay problem� We experimentally verify
that our new approach of not reseting is much better than
the previous approach of reseting each time� We show that
our approach can speed up the minimization of maximum
delay using Lagrangian relaxation by ������
The rest of this paper is organized as follows� In Section

�� we will present the weighted sink delay problem and the
algorithm GWSA considered in 	��� In Section 
� we will an�
alyze the convergence of GWSA� In Section �� experimental
results to show the linearity of the run time of GWSA and
the speedup on optimizing other objectives using Lagrangian
relaxation are presented�

�� THE WEIGHTED SINK DELAY PROBLEM
AND THE ALGORITHM GWSA

In this section� we will �rst present the continuous wire�sizing
problem with weighted sink delay objective and then the
algorithm GWSA considered in 	���
Assume that we are given a routing tree T imple�

menting a signal net which consists of a source �at the
root� with driver resistance RD� a set of n wire segments
W � fW��W�� � � � �Wng� and a set of m sinks N �
fN�� N�� � � � � Nmg �at the leaves� with load capacitance csk�
� � k � m� Associated with each sink Nk is a non�negative
weight �k representing the criticality of the sink� Assume
without loss of generality that

Pm

k��
�k � �� Basically� the

problem is to minimize the weighted sink delay for the rout�
ing tree by changing the widths of the wire segments� See
Figure � for an example of a routing tree�
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Figure �� An example of a routing tree�

Let dec�Wi� be the set of descendant wire segments or
sinks of Wi �excluding Wi�� Let ans�Wi� be the set of an�
cestor wire segments of Wi �excluding Wi�� Let path�Nk�
be the set of wire segments on the path from the driver to
the sink Nk� For example� for the routing tree as shown
in Figure �� dec�W�� � fW��W��W�� N�� N�g� ans�W�� �
fg� dec�W�� � fN�g� ans�W�� � fW��W��W	g� and
path�N�� � fW��W��W	�W�g�

For � � i � n� let xi be the width of wire segmentWi� and
Li and Ui be respectively the lower bound and the upper
bound on the width of Wi� Therefore� Li � xi � Ui for
� � i � n� Let x � �x�� x�� � � � � xn�� which will be referred
to as a wire�sizing solution� A wire segment is modeled as
a ��type RC circuit as shown in Figure �� The resistance
and capacitance of wire segment Wi are bri�xi and bcixi � fi
respectively� where bri is the unit width wire resistance� bci
is the unit width wire area capacitance� and fi is the wire
fringing capacitance of Wi�
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Figure �� The model of wire segment Wi by a ��type RC
circuit� Note that the resistance and capacitance of the segment
are bri�xi and bcixi 	 fi respectively� where bri is the unit width

wire resistance� bci is the unit width wire area capacitance� and fi
is the wire fringing capacitance of Wi�

Let �i �
X

Nk�dec
Wi�

�k� i�e� �i is the total downstream

sink weights of segment Wi�

Let Ri�x� �
X

Wj�ans
Wi�

�jbrj�xj � i�e� Ri�x� is a weighted

upstream wire resistance of segment Wi�

Let Ci�x� �
X

Wj�dec
Wi�

bcjxj � i�e� Ci�x� is the total down�

stream wire area capacitance of segment Wi�

Let Cfs
i �

X
Wj�dec
Wi�

fj�
X

Nk�dec
Wi�

csk� i�e� C
fs
i is the total

downstream wire fringing capacitance and sink capacitance
of segment Wi�

Elmore delay model 	��� is used for delay calculation� For
a wire�sizing solution x� the Elmore delay from the source to



the sink Nk is given by

Dk�x� � RD�
X

Wj�W

bcjxj � X
Wj�W

fj �
X
Nk�N

csk�

�
X

Wi�path
Nk�

bri
xi

�bcixi
�

� Ci�x� �
fi
�
� Cfs

i

�
Then the weighted sink delay problem can be written as�

Minimize D�x� �

mX
k��

�kDk�x�

Subject to Li � xi � Ui� � � i � n�

Now we present the algorithm GWSA proposed in 	�� for
solving the weighted sink delay problem� The algorithm
GWSA is a greedy algorithm based on iteratively re�sizing
the wire segments� In each iteration� the wire segments are
examined one by one� When a wire segment Wi is exam�
ined� it is re�sized optimally while keeping the widths of all
other segments �xed� This operation is called an optimal
local re�sizing of Wi� The following lemma gives a formula
for optimal local re�sizing�

Lemma � For a wire�sizing solution x � �x�� x�� � � � � xn��
the optimal local re�sizing of Wi is given by changing the
width of Wi to

xi � min

���Ui�max

���Li�

s
�ibribci �

Ci�x� �
fi
�
�Cfs

i

Ri�x� �RD

��	
��	

Proof outline� By extending the proof of Lemma � in 	��
�which did not consider wire fringing capacitance�� we can
show that

D�x� � bcixi �Ri�x� �RD� �
�ibri
xi



Ci�x� �

fi
�
� Cfs

i

�
� terms independent of xi

Note that Ri�x� and Ci�x� are also independent of xi� Hence
by Lemma � of 	��� the result follows� �

Let children�Wi� be the set of all children wire segments
of Wi and let pi be the index of the parent wire segment of
Wi� Then the algorithm GWSA is given below� Note that
since Ci�x� and Ri�x� are computed incrementally in step
S
 and S�� each iteration of GWSA takes only O�n� time�
For the original GWSA in 	��� in S�� xi is set to Li for

all i� Then dominance property can be applied to show that
the algorithm converges� However� the convergence rate is
not known� Also� if some other starting wire�sizing solution
is used in S�� it it not clear whether the algorithm will still
converge� In the next section� we will show that GWSA
always converges linearly for any starting solution�

�� CONVERGENCE ANALYSIS OF GWSA

In this section� we will �rst prove that the algorithm GWSA
always converges to the optimal solution for any starting so�
lution �Theorem ��� Then we will prove that the convergence
rate for any starting solution is always linear� This implies
the run time of GWSA is O�n log �

�
� for any starting solution�

where � speci�es the precision of the solution �Theorem ���
For the following two lemmas� we will focus on segment

Wk for some �xed k� Note that during the n optimal local

ALGORITHM GWSA�
S�� Let x be some starting wire�sizing solution�

S�� Compute �i�s and Cfs
i �s by a bottom�up traversal

of T using the following formula�

�i ��

�
�k� if Wi connects directly to sink NkP

Wj�children
Wi�
�j � otherwise

Cfs
i ��

�
csk� if Wi connects directly to sink NkP

Wj�children
Wi�
�fj � Cfs

j �� otherwise

S
� Compute all Ci�s by a bottom�up traversal
of T using the following formula�

Ci�x� ��
P

Wj�children
Wi�
�bcjxj � Cj�x��

S�� Perform a top�down traversal of T �
For each Wi�

Ri�x� �� Rpi�x� � �pibrpi�xpi
xi 
 min

���Ui�max

���Li�

s
�ibribci Ci�x� 	

fi
�
	 Cfs

i

Ri�x� 	 RD

��	
��	

S��Repeat S
�S� until no improvement�

re�sizing operations just before the local re�sizing of Wk at
a particular iteration �except the �rst iteration�� each wire
segment is re�sized exactly once� Intuitively� the following
two lemmas show that during these n re�sizing operations�
if the changes in all the segment widths are small� then the
change in the width xk during the local re�sizing of Wk at
that iteration will be even smaller�
For some t � �� let x � �x�� � � � � xn�� x

� � �x��� � � � � x
�
n� and

x
�� � �x��� � � � � � x

��
n� be respectively the wire�sizing solution

just before the local re�sizing of Wk at iteration t� t� � and

t � � of GWSA� Let q�k �

s
�kbrkbck �

Ck�x� �
fk
�
� Cfs

k

Rk�x� �RD
and

q��k �

s
�kbrkbck �

Ck�x�� �
fk
�
� Cfs

k

Rk�x�� �RD
� So by Lemma �� x�k �

minfUk�maxfLk� q
�
kgg and x��k � minfUk�maxfLk� q

��
kgg�

Lemma � For any 	 
 � if
�

� � 	
�

x�i
xi
� � � 	 for all i�

then
�

� � 	�
�

q��k
q�k
� � � 	� for some constant  � � � ��

Proof� If �
���

xi � x�i � �� � 	�xi for all i� we have

�

� � 	
Rk�x� � Rk�x

�� � �� � 	�Rk�x�

and

�

� � 	
Ck�x� � Ck�x

�� � �� � 	�Ck�x��

Let � � max
��k�n

���
��

�
� � RDP

Wi�ans�Wk�
bri�Li

�
�

��

�
� �

fk
�
�C

fs

kP
Wi�ans�Wk�

bciUi
�

��	
�

Note that � is a constant such that  � � � ��
Since  � �i � � and xi � Li for all i� we have Rk�x� �P

Wi�ans
Wk�
�ibri�xi �PWi�ans
Wk�

bri�Li�
So � � �� �� �RD�Rk�x��� or equivalently�

Rk�x� � ��Rk�x� �RD��



Hence

Rk�x
�� �RD � �� � 	�Rk�x� �RD

� 	Rk�x� � �Rk�x� �RD�

� 	��Rk�x� �RD� � �Rk�x� �RD�

� �� � 	���Rk�x� �RD� ���

and

Rk�x
�� �RD �

�

� � 	
Rk�x� �RD

� Rk�x� �RD �
	

� � 	
Rk�x�

� Rk�x� �RD �
	�

� � 	
�Rk�x� �RD�

� ���
	�

� � 	
��Rk�x� �RD�



�

� � 	�
�Rk�x� �RD� ���

as 	 
  and  � � � �

Similarly� since xi � Ui for all i� we have Ck�x� �P
Wi�ans
Wk�

bcixi �PWi�ans
Wk�
bciUi�

So � � ��
�
� � � fk

�
� Cfs

k ��Ck�x�
�
� or equivalently�

Ck�x� � ��Ck�x� �
fk
�
�Cfs

k ��

Hence we can prove similarly that

Ck�x
�� �

fk
�
�Cfs

k � �� � 	���Ck�x� �
fk
�
� Cfs

k � �
�

and

Ck�x
�� �

fk
�
� Cfs

k 

�

� � 	�
�Ck�x� �

fk
�
� Cfs

k � ���

By de�nitions of q�k and q��k � and by ��� and �
�� we have

q��k �

s
�kbrkbck �

Ck�x�� �
fk
�
� Cfs

k

Rk�x�� �RD

�

s
�kbrkbck �

�� � 	���Ck�x� �
fk
�
� Cfs

k �
�

����
�Rk�x� �RD�

� �� � 	��q�k�

Similarly� by ��� and ���� we can prove that q��k �
�

� � 	�
q�k�

As a result�
�

� � 	�
�

q��k
q�k
� � � 	�� �

Lemma � For any 	 
 � if
�

� � 	
�

x�i
xi
� � � 	 for all i�

then
�

� � 	�
�

x��k
x�k

� � � 	� for some constant  � � � ��

Proof� By Lemma �� if �
���

xi � x�i � �� � 	�xi for all i� then
�

����
q�k � q��k � ���	��q�k where � is the constant as de�ned

in Lemma �� By Lemma �� x�k � minfUk�maxfLk� q
�
kgg and

x��k � minfUk�maxfLk� q
��
kgg�

In order to prove �
����

x�k � x��k � we consider three cases�

Case �� q�k � Lk�

Then x�k � Lk� So
�

� � 	�
x�k �

�

� � 	�
Lk � Lk � x��k �

Case �� q��k 
 Uk�

Then x��k � Uk� So
�

� � 	�
x�k �

�

� � 	�
Uk � Uk � x��k �

Case �� q�k � Lk and q��k � Uk�
Then q�k � Lk � x�k � q�k and q��k � Uk � q��k � x��k � So

�

� � 	�
x�k �

�

� � 	�
q�k � q��k � x��k �

Similarly� by considering the cases q�k 
 Uk� q
��
k � Lk and

�q�k � Uk and q��k � Lk�� we can prove x��k � �� � 	��x�k�

As a result�
�

� � 	�
�

x��k
x�k

� � � 	�� �

The following two lemmas give bounds on the changes of
segment widths after each iteration of GWSA� Let x
� �

�x

�
� � x


�
� � � � � � x


�
n � be the starting wire�sizing solution� and

for t � �� let x
t� � �x

t�
� � x


t�
� � � � � � x


t�
n � be the wire�sizing

solution just after iteration t of GWSA�

Lemma � For any t �  and 	 
 � if
�

� � 	
�

x

t���
i

x

t�
i

� � � 	 for all i� then
�

� � 	�
�

x

t���
i

x

t���
i

� � � 	� for all i

and for some constant  � � � ��

Proof� Assume without loss of generality that the wire seg�
ments are indexed in such a way that a top�down traversal
of T is in the order of W��W�� � � � �Wn� The lemma can be
proved by induction on i�

Base case� Consider the wire segment W��
At iteration t��� before local re�sizing of W�� the wire�

sizing solution is �x

t�
� � x


t�
� � � � � � x


t�
n ��

At iteration t��� before local re�sizing of W�� the wire�

sizing solution is �x

t���
� � x


t���
� � � � � � x


t���
n ��

Since �
���

�
x
�t���
i

x
�t�

i

� � � 	 for all i� by Lemma 
� we

have �
����

�
x
�t���
�

x
�t���
�

� � � 	��

Induction step� Assume that the induction hypothesis
is true for i � �� � � � � k�
At iteration t��� before local re�sizing of Wk� the wire�

sizing solution is �x

t���
� � � � � � x


t���
k � x


t�
k��� � � � � x


t�
n ��

At iteration t��� before local re�sizing of Wk� the wire�

sizing solution is �x

t���
� � � � � � x


t���
k � x


t���
k�� � � � � � x


t���
n ��

By induction hypothesis� �
����

�
x
�t���
i

x
�t���

i

� � � 	�� and

hence �
���

�
x
�t���

i

x
�t���
i

� � � 	 �as � � �� for i � �� � � � � k�

Also� it is given that �
���

�
x
�t���

i

x
�t�
i

� � � 	 for i � k �

�� � � � � n� So by Lemma 
� �
����

�
x
�t���

k

x
�t���

k

� � � 	��

Hence the lemma is proved� �

Let � � max
��i�n

n
Ui � Li
Li

o
�

Lemma 	 For any t � �
�

� ���t
�

x

t���
i

x

t�
i

� � � ��t for

all i and for some constant  � � � ��



Proof� This can be proved by induction on t�
Base case� Consider t � �
Note that for any wire�sizing solution x � �x�� � � � � xn��

Li � xi � Ui for all i� So
x
���
i

x
���
i

� Ui
Li
� ��Ui�Li

Li
� ����

Similarly� we can prove that for all i�
x
���
i

x
���

i

� �
���

�

Induction step� Assume that the induction hypothesis

is true for t� Therefore� �
����t

�
x
�t���
i

x
�t�

i

� � � ��t for

all i� So by Lemma �� �
����t��

�
x
�t���

i

x
�t���
i

� � � ��t��

for all i�
Hence the lemma is proved� �

Theorem � GWSA always converges to the optimal wire�
sizing solution for any starting solution�

Proof� For any constant  � � � �� ����t � � as t���
So by Lemma �� it is obvious that the algorithm GWSA
always converges for any starting wire�sizing solution� The�
orem � of 	�� proved that if GWSA converges� then the wire�
sizing solution is optimal� So the theorem follows� �

Let x� � �x��� x
�
�� � � � � x

�
n� be the optimal wire�sizing solu�

tion� The following lemma proves that the convergence rate
of GWSA is linear with convergence ratio ��
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Since the convergence rate of GWSA is linear and the run
time of each GWSA iteration is O�n�� we have the following
theorem�

Theorem � The total run time of GWSA for any starting
solution is O�n log �

�
�� where � speci�es the precision of the

�nal wire�sizing solution �i�e� for the optimal solution x
��

the �nal solution x satis�es j�x�i � xi��x
�
i j � � for all i��

Proof� By Lemma �� for any t �  and for all i�����x�i � x
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In order to guarantee that j�x�i � x
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In other words� at most
l
log �

�


�����
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m
iterations are

enough� Since each iteration of GWSA takes O�n� time�
the total run time is O�n log �

�
�� �

Therefore� to obtain a solution with any �xed precision�
only a constant number of GWSA iterations are needed� This
implies that the run time of GWSA is O�n�� In practice� even
for very accurate solutions� GWSA usually takes only a few
iterations� So� as we will demonstrate in the next section�
GWSA is very e�cient in practice�



�� EXPERIMENTAL RESULTS

In this section� we will demonstrate the linearity of the run
time of GWSA in practice and the use of better starting
solutions to speed up the optimization of other objectives
using Lagrangian relaxation� We run the algorithm GWSA
on an IBM PC with a � MHz Pentium Pro processor�

Figure 
 shows the linearity of the run time of GWSA�
We are using the clock trees r��r� in 	���� The number of
segments in these trees range from �

 to ���� In order
to have more data points� we construct � trees from each
tree by dividing each tree edge into k segments where k �
�� � � � � �� So we have � trees with the number of segments
ranging from �

 to ���� For each tree� we run GWSA
with � equals ���� The run time is plotted against the
number of segment in Figure 
� It can be seen that the run
time of GWSA is linear in practice�

Run Time of GWSA is Linear
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Figure �� Run time of GWSA verses number of segments�

To demonstrate the usefulness of being able to use any
starting wire�sizing solution� we solve the problem of min�
imizing the maximum sink delay of the clock trees r��r��
This problem is reduced by Lagrangian relaxation to a se�
quence of weighted sink delay problems� Previously� before
solving each weighted sink delay problem� all segments are
reset to their minimum possible widths to form the starting
solution of GWSA� Our result implies that GWSA will still
converge even if we do not reset the segments widths� So in
our new approach� we do not reset� and therefore the opti�
mal solution of a weighted sink delay problem is used as a
better starting solution to the next one in the sequence� The
run time of the previous approach and our new approach are
listed in Table �� For the old approach� each weighted sink
delay problem takes about � iterations of GWSA� For our
approach� each weighted sink delay problem takes only ����
iterations of GWSA on average� The overall improvement
on the run time is ����� on average�
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Circuit CPU time �s�
Name Size Old approach Our approach Improv�
r� �

 ���� ��� �����
r� ���� ���� 
�
� �����
r
 ���
 ����� ��� �����
r� 
�� ���
� ����� ���
�
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Average� �����

Table �� Demonstration of the usefulness of being able to use
any starting solution� The run time for the old approach �reset to
min�width before each call to GWSA� and our new approach �do
not reset� are listed�
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