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Abstract

In this paper, we present a completely new approach to the
problem of delay minimization by simultaneous buffer inser-
tion and wire sizing for a wire. We show that the problem can
be formulated as a convex quadratic program, which is known
to be solvable in polynomial time. Nevertheless, we explore
some special properties of our problem and derive an optimal
and very efficient algorithm to solve the resulting program.
Given m buffers and a set of n discrete choices of wire width,
the running time of our algorithm s O(mn2) and is indepen-
dent of the wire length in practice. For example, an instance
of 100 buffers and 100 choices of wire width can be solved in 3
seconds. Besides, our formulation is so versatile that it is easy
to consider other objectives like wire area or power dissipation,
or to add constraints to the solution. Also, wire capacitance
lookup tables, or very general wire capacitance models which
can capture area capacitance, fringing capacitance, coupling
capacitance, etc. can be used.

1 Introduction

In the past, gate delay is the dominating factor in
circuit design. However, as the feature size of VLSI de-
vices continues to decrease, interconnect delay becomes
increasingly important. Nowadays, feature size has been
down to 0.25um in advance technology. Interconnect
delay has become the dominating factor in determining
system performance. In many systems designed today,
as much as 50% to 70% of clock cycle are consumed by
interconnect delay [9]. Tt is predicted in [12] that the fea-
ture size will be reduced to 0.18um by 1999 and 0.13pm
by 2002. So we expect the significance of interconnect
delay will further increase in near future.

In this paper, we will mainly consider the simultane-
ous buffer insertion and wire sizing problem as stated in
Problem 1. (Elmore delay model [13] is used for delay
calculation.) Both buffer insertion and wire sizing have
been shown to be effective techniques to reduce intercon-
nect delay and many work has been done during the past
few years. See below for a brief overview or see [9] for a
comprehensive survey.

For wire sizing alone, almost all the previous work
gives an approximate solution by the approach of divid-
ing the wire into small fixed-length segments and opti-

PROBLEM 1: The Simultaneous Buffer Insertion and
Wire Sizing Problem

Given: wire length L, driver resistance Rp, load capac-
itance Cr, a set H = {hi,...,hn} of choices of
wire width such that hy > --- > hy,, and m buffers
Bi,...,Bn.

Determine: the positions #i1,...,7., at which the
buffers are inserted and the wire width f(z) at each
point x along the wire such that the delay from source
to sink is minimized.
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mizing the width of each segment iteratively (e.g. [1, 3,
7, 8,10, 11, 20, 21, 23] ). In order to obtain accurate
results, the wire usually needs to be divided into a large
number of (much more than n) segments. [2, 4, 14, 15]
consider a variant such that the set H of choices of wire
width is a continuous interval. Therefore, the resulting
wire width function f(z) is continuous. However, a con-
tinuous shape is expensive to fabricate.

Not much work has been done on simultaneous buffer
insertion and wire sizing. Recently, [18] generalizes the
dynamic programming algorithm in [22] to handle buffer
insertion and wire sizing simultaneously. Their algo-
rithm also allows choices of buffers of different size and
includes power consideration. However, their algorithm
runs in pseudo-polynomial time and requires a substan-
tial amount of memory. [6] also considers buffer insertion,
buffer sizing and wire sizing simultaneously and a closed
form optimal solution i1s obtained. However, in that pa-
per, only wire area capacitance is considered (terms like
wire fringing capacitance are ignored).

We present a completely new approach in this paper.
Instead of solving Problem 1 directly, we will solve an
equivalent problem which will be introduced later (see
Problem 1’ in Section 3). Our new approach has many
advantages over the previous approaches:

1. The problem of our approach has much less vari-



ables than the problem of the traditional approach
of dividing a wire into small fixed-length segments.
If m buffers are to be inserted and a set of n choices
of wire width is given, the problem we formulated
will have (m+ 1)n variables no matter how long the
wire i1s. As in practice, usually only a few buffers
and a few choices for the wire width are allowed,
(m+ 1)n is a small number. Moreover, the problem
of our approach is completely equivalent to Problem
1 (not an approximation).

. The problem of our approach can be solved opti-
mally and very efficiently even for large m and n.
We will show that our problem is a convex quadratic
program. Convex quadratic programming has been
well studied and can be solved efficiently by many
public domain or commercial software systems. Nev-
ertheless, we explore some special properties of our
problem and derive an even more efficient iterative
algorithm such that each iteration needs only linear
time. In practice, the algorithm runs in about n iter-
ations only. For example, an instance of 100 buffers
and 100 choices of wire width (i.e. 10100 variables)
can be solved in 3 seconds by our algorithm.

. Buffer insertion is generally considered a hard prob-
lem and usually some heuristics or dynamic pro-
gramming are needed to handle it. However, it is
interesting to note how naturally and easily buffer
insertion is handled in our approach. We will see
that it is no more difficult than wire sizing alone.

. Besides delay, our formulation can be easily ex-
tended to consider other objectives like wire area or
power dissipation. For example, we can optimally
solve the problems of minimizing a weighted sum of
delay and wire area, minimizing delay with bounded
area, minimizing area with bounded delay, etc. Our
formulation also allows adding constraints to the so-
lution. Moreover, our efficient algorithm can still be
applied to get optimal results.

. We can use very general wire capacitance models
which can capture area capacitance, fringing capac-
itance, coupling capacitance (the capacitance due to
an adjacent parallel wire), etc. A wire segment is
modeled as a w-type RC circuit as shown in Fig-
ure 1. The capacitance of a wire segment of width
h and length [ is given by c(h){, where ¢(h) is the
unit length wire capacitance for a segment of width
h. The only restriction on ¢ is that it has to be an
increasing function from Rt to Rt. For example,
to model wire area capacitance, wire fringing capac-
itance and coupling capacitance at the same time,
suppose the distance to an adjacent parallel wire 1s

d — h when the wire width is h. Then we can set
e(h) = coh + ¢f + ¢./(d — h), where ¢ is the unit
wire area capacitance, ¢y is the unit wire fringing
capacitance and ¢, is the unit wire coupling capac-
itance. The values of ¢(h) for each h in H can also
be obtained from a lookup table.
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Figure 1: The model of a wire segment of length | and width
h by a m-type RC circuit. ro is the unit wire resistance. c(h)
is the wire capacitance per unit length for a segment of width
h. We assume c(h) is an increasing function in this paper.

The paper is organized as follows. In Section 2, we will
first consider the problem of wire sizing without buffer
insertion. Once the formulation and the algorithm for
wire sizing is understood, the extension to simultaneous
buffer insertion and wire sizing will be easy and will be
discussed in Section 3. In Section 4, we will further ex-
tend our results to consider other objectives like wire
area or power, and to handle additional constraints to
the solution. In Section 5, some experimental results to
show the efficiency of our algorithm will be presented. In
Section 6, we discuss some directions for future research.

2 Wire Sizing

For the rest of the paper, we will use uppercase bold-
face letters to denote matrices and lowercase boldface
letters to denote vectors. We will use the convention
that indices of matrices and vectors start from one. To
simplify the presentation, if we refer to an element of a
matrix or a vector such that the index is out of range,
we assume that the value is zero.
2.1 Owur New Approach

We want to solve the wire sizing problem as stated in
Problem 2, where the optimal wire width is represented
by a step function f : [0,L] — H. Instead of solving
Problem 2 directly, we approach the problem by looking
at an equivalent problem. Before we introduce the new
problem; we will first prove that f must be a decreasing
function. A similar monotone property for simpler wire
capacitance model and fixed-length segments has been
proved in [11].

Lemma 1 The optimal wire sizing function f is a de-
creasing function.

Proof outline: Suppose f changes from a smaller value
h to a larger value A’ at a point of a distance [ from
the source. Therefore, f(z) = h for | — 3§ < z <! and
flx) = K for Il < & <1+ 6 for some § > 0. Let g



PROBLEM 2: The Wire Sizing Problem

Given: wire length L, driver resistance Rp, load capac-
itance Cr, a set H = {h1,...,hn} of choices of wire
width such that Ay > -+ > hy,.

Determine: the wire width f(z) at each point z along
the wire such that the delay from source to sink is

minimized.
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be another wire sizing function defined as g(x) = »’ for
l—6<ue<l,g(x) =hforl <o <l+¢and g(z) = f(x)
otherwise. We can show that g is better than f, which
contradicts to the fact that f i1s optimal. a

Instead of solving Problem 2 directly, we will solve
Problem 2’ below. In Problem 2/, the wire is divided
into n segments such that the width of the ith segment is
h;, and the length of each segment is to be determined.
By Lemma 1, it is clear that Problem 2’ is equivalent
to Problem 2. Note that our new approach divides the
wire into only n segments and gives an optimal solution
to the original problem. If we approach Problem 2 by
dividing the wire into small fixed-length segments, the
solution will not be exact. In order to obtain a good
approximation, the wire needs to be divided into much
more than n segments.

PROBLEM 2': The Wire Sizing Problem of Our Ap-
proach (equivalent to Problem 2)

Given: wire length L, driver resistance Rp, load capac-
itance Cr, a set H = {h1,...,hn} of choices of wire
width such that Ay > -+ > hy,.

Determine: the segment lengths I; > 0 for 1 <1 < n
such that the delay from source to sink is minimized.
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2.2 Problem formulation

We will show in this subsection that Problem 2’ can
be formulated as a convex quadratic program.

Let ¢; = ¢(hy) for 1 < ¢ < n. Then for Problem 2, the

delay from source to sink 1s

D = Rplali+elo+--+culn+Cp)
{ {
4 ro_l(cl—l—FCzlz‘i‘"i'C”l”—i—CL)
hy 2
{ {
4 m_2(62—2—|—63l3++6”l”+01’)
hy 2
roln  enlp
+o (O
1
= @+ p"l+ RpCy
where
Clro/hl Czro/hl CSTO/hl CnTO/hl
Czro/hl Czro/hZ CSTO/hZ CnTO/h2
& — | csro/h1 caro/ha  c3ro/hs ento/hs 5
Cnro/hl Cnro/h2 cnro/hg CnTO/hn
Rper + Crro/hy b
Rpes + Crrg/hs Lo
p= Rpes + Crro/hs andl=| s
Rpen + Crro/ha b

So Problem 2/ can be formulated as follows:

el 4 p"1

h+--+1l,=L (1)
i >0for1<:<n

minimize
subject to

This is a quadratic program. In general, quadratic pro-
gram is a mathematical program with a quadratic ob-
jective function subject to linear equality and inequality
constraints. If the matrix ® is positive definite, it 1s
called a convex quadratic program. Note that quadratic
programming is NP-hard [16] but convex quadratic pro-
gramming can be solved in polynomial time [17]. In the
following, we will prove that the quadratic program (1)
is convex. First, we make the following two definitions.

Definition 1 (Symmetric Decomposable Matriz)

Let Q = (qij) be an n x n symmetric matriz. If for
some o = (ay,...,a,)T and v = (vy,...,v,)T such that
0 <oy < - <, @55 = qj; = ouvv; fori < j, then Q
15 called a symmetric decomposable matriz. We denote

Q=SDM(a,v).

Definition 2 (Upper Triangular Decomposable Matriz)
Let U = (u;;) be an n x n upper triangular matriz. If
for some B = (B1,...,3.)F and v = (vi,...,v,)T such
that 8; > 0 for all v, u;; = vy fori < j and u;; =0 for
t > j, then U 1is called an upper triangular decomposable
matriz. We denote U = UTDM (a, v).



Lemma 2 ® in (1) is symmetric decomposable.
Proof:

Let a:(cf—zl, ’c:;)zn)T and v = (c1,...,¢,)7. Note
that 0 < << . Then ® = SDM (ax,v). O
Clhl Cnlln

Lemma 3 If Q is symmetric decomposable, then Q@ =
UTU where U is upper triangular decomposable. In
particular, if Q = SDM(a v), then Q = UTU where
U=UTDM(B,v =/« —a21f0r1<z<n
Proof outline:

Can be verified by multiplying UT and U. a

Lemma 4 If Q is symmetric decomposable, then Q is
positive definite.

Proof: Let Q@ = SDM (o, v). By Lemma 3, Q = vTu
where U = UTDM (3, v) for some 3. For any & # 0,
let y = Uwx. Note that y # 0 as U is nonsingular and
® £ 0. Sox"Qx = "UTUx = y"y > 0. In other
words, @ is positive definite. a

By Lemma 2, Lemma 4 and [17], we have Theorem 1.

Theorem 1 The quadratic program (1) is convex, and
hence can be solved in polynomial time.

2.3 Algorithm

In the following, we will make some interesting obser-
vations on the convex quadratic program (1) and then
derive a very efficient algorithm to solve it based on the
idea of active set method. Active set method is a classi-
cal technique for constrained optimization problems. It is
also one of the most popular methods to solve quadratic
programming. It has been shown to be efficient in prac-
tice. We will first give a brief outline on how to solve
convex quadratic programming by active set method.
See [19] for details.

If a convex quadratic program consists of equality con-
straints only, it is particularly easy to solve. Consider the
following program:

LiTd1 + pT1
2
Tli=b (2)

minimize
subject to

where ® is positive definite and I is of full rank. Consider
the associated Lagrangian:

1
ol = 5zT<1>l + pT1+ AT(T1 - b)

The Lagrange necessary conditions of optimality are
AL, A)/Ol; =0 and 9L, A)/OA; = 0 for all . The con-

ditions can be written in matrix form as follows:

®I+T"A+p = 0
Tl-b = 0

Since @ is positive definite and T is of full rank, it can
be shown that the conditions can be uniquely solved:

A —(re 'rN-Yre-'p+1b) @)
I = - 'r"ax-—a!p

Now consider a general convex quadratic program,
which can have both equality and inequality constraints.
If we solve the program by ignoring all the inequality
constraints and the solution obtained is feasible with re-
spect to all constraints, then it should be the optimal
solution of the original program. If it is non-feasible, the
optimal solution should be on the boundary of the set of
feasible solutions. Active set method is a systematic way
to search for the optimal solution on the boundary.

The idea underlying active set method is to partition
the inequality constraints into two groups: active and
inactive. In each iteration, those active constraints are
treated as equality constraints and those inactive con-
straints are essentially ignored (i.e. the feasible space
is restricted to some boundary). The resulting equality
constrained program is solved. If the solution is infeasi-
ble with respect to the original program, some inactive
constraints will be added to the set of active constraints.
If the solution is feasible but not optimal (i.e. some La-
grange multipliers are negative), some constraints will be
removed from the current active set. The process is re-
peated until the optimal solution is found (in that case,
the active set will define the boundary the optimal solu-
tion is on).

Therefore if we apply active set method to (1), we
need to solve an equality constrained problem in the form
of (2) (i.e. compute (3)) in each iteration. Each iteration
can be done in cubic time in general. However, we will
show below that (3) can be solved in linear time in our
case.

First, note that all the inequality constraints in (1)
are of the form I; > 0. If we set [; = 0 and substitute
it into (1), the resulting program is of exactly the same
form as (1) but of smaller size. In fact, if for some it-
eration, all constraints except {;, > 0,...,l; > 0 are in
the active set A4, then the equality constrained program
corresponding to that iteration will be equivalent to the
following reduced program:

minimize %la'iI)AlA + pﬂlA (4)
subject to T'gly =1L
where 14 = (lj1a~~~,ljr)T, Ty = (11 - 1)

pa = (Bpej + Crro/hyy, ..., Rpej, + Crro/hy,)T,
and ® 4 i1s the symmetric decomposable matrix cor-
responding to A (ie. ®4 = SDM(as,v4) with

_ "o o T N\T
aA_(%hjl’ ’erhjr) 2€ir)")-

and va = (¢jy,...



As before, the Lagrange necessary conditions of optimal-
ity for (4) are

A = —(Ta®,'TH)™!
g = —CI);lFa/\A—

(Ta®y ' pa+1L)
o4

The crucial observation is that <I>;1 is tridiagonal, as
proved in the following lemma.

Lemma 5 If Q is symmetric decomposable, then Q!

is tridiagonal. In particular, if Q = SDM(a v), then
Q1 = (045) where 05 = 1/((as — as_1)0?) + 1/ (@141 —
ai)vi), Oiipzr = Oiy1i = —1/((ig1 — ag)vivigr) for
1<i<n—1, 0, =1/(an — an_1)v2), and 6;; = 0
otherwise.

Proof outline: Can be verified by multiplying the ma-
trices Q@ = SDM (e, v) and (;;) defined above. a

By Lemma 2 and Lemma 5, we have the Theorem 2.
Theorem 2 @;1 in (4) is tridiagonal.

Let @;1 = (6;;) where 6;; is given by Lemma 5 and
let py = (p1,...,p-)F. Then the Lagrange optimality
conditions for (4) can be written in closed form as follows:

L+ Z(Gi_u + 0ii + Oig1i)pi

=
2(92'—1,2' +0ii + 1)
i=1
i, = —(8ic1,ipiz1 + Giipi + Oig1,ipigr)

—(Bic1,i+ 6 +0i41:)da for 1 <i<r
Obviously, [; = 0 for all j & {j1,...,jr}. Once lis found,
it is not difficult to see that A in (3) can also be found in
linear time. Hence (3) can be computed in linear time.
The algorithm can be summarized as below.

Algorithm MASM (Modified Active Set Method)
1. Set the active set A = 0.
2. repeat
3 Solve for A and I with respect to A
4. by our special technique.
5. if (l 7 0) then /* check for feasibility */
6 Add some inactive constraints to A.
7 else if ()\ 7 0) then /* check for optimality */
8 Remove some active constraints from A.
9. until (I > 0 and XA > 0)

Theorem 3 The wire sizing problem (Problem 2, or
equivalently, Problem 2') can be solved by algorithm
MASM such that each iteration takes O(n) time.

The number of iterations of the algorithm depends on
how constraints are added to and remove from A. For
step 6, we add all the inactive constraints corresponding
to negative segment lengths. For step 8, we remove the
one corresponding to the most negative A;. In Section 5,
we will see for this implementation, the number of itera-
tions of our algorithm MASM is less than » in practice.

3 Simultaneous Buffer Insertion and

Wire Sizing

In this section, simultaneous buffer insertion and wire
sizing will be discussed. m buffers By, ..., By, are given
and they will be inserted into a wire in this order (with By
nearest to the source). A buffer is modeled as a switch-
level RC circuit as shown in Figure 2. For convenience,
we treat the source and the sink as buffers and we call
the source By and the sink Bp,y1.
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Figure 2: The model of a buffer B by a switch-level RC
circuit. c¢p, rp and dp are the Input capacitance, output

resistance and the intrinsic delay of buffer B respectively.

We want to solve Problem 1 introduced in Section 1.
Note that the wire width is not necessary to be decreas-
ing across a buffer. However, the sizing problem of the
piece of wire between By and By41 for any k is basically
the same as Problem 2 discussed in Section 2 (except
that the length of that piece of wire is not fixed). So by
Lemma 1, the optimal wire sizing function between two
buffers will still be a decreasing step function. Hence,
we can approach the problem as before by dividing the
piece of wire between every pair of consecutive buffers
into n segments of decreasing width, and determining
the length of each segment. Instead of having a total
length constraint for each piece of wire between buffers,
we will have a single constraint specifying that the sum
of all segment lengths equals L. See Problem 1’ below.

Let @' be the matrix corresponding to the coefficients
of the quadratic terms and p, be the vector correspond-
ing to the coefficients of the linear terms for the delay
from By to Bi41. Let

i 0 Po
4 251
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PROBLEM 1’: The Simultaneous Buffer Insertion and
Wire Sizing Problem of Our Approach (equivalent to
Problem 1)

Given: wire length L, driver resistance Rp, load capac-
itance Cr, a set H = {hi,...,hn} of choices of
wire width such that hy > --- > hy,, and m buffers
Bi,...,Bn.

Determine: the segment lengths I; > 0 for 1 < ¢ <
(m + 1)n such that the delay from source to sink
is minimized.

Then the delay from source to sink 1s

1 m m
D= §lT(I)l =+ pTl =+ ;erch+1 + kz_:ldBk

So Problem 1’ can be formulated as follows:

minimize %lT'iI)l +p7l
subject to 1 + -+ {pmy1yn = L
L >0for 1 <i<(m+1)n

which is of the same form as (1). ® is clearly positive
definite as ®’ is positive definite. Hence the quadratic
program is again convex. In addition, for each iteration,
we can find I and X\ as before by reducing the equality
constrained program as in (2) to one as in (4). The ma-
trix ® 4 will be:

0

0 .
where ® 4, 1s the symmetric decomposable matrix cor-
responding to the set of active constraints for segments
between By and Bgyi. So

-1
3! 1 0
-
CI);tl = A
-1
0 3,
Therefore @;1 is also tridiagonal as @;i, @;1, el @;iﬂ

are all tridiagonal. Hence, Problem 1’ can be solved as
before.

Theorem 4 The simultaneous buffer insertion and wire
sizing problem (Problem 1, or equivalently, Problem 1)
can be solved by algorithm MASM such that each iteration
takes O(mn) time.

We will see in Section 5 that the number of iterations of
our algorithm MASM is about n in practice.

4 Extensions

In the following two subsections, we will extend our
result for simultaneous buffer insertion and wire sizing
to consider wire area (and hence power dissipation), and
to handle additional constraints to the solution respec-
tively. We will show that for both extensions, the result-
ing problem can still be solved by MASM such that each
iteration can be done in linear time. Besides, it is easy
to see that we can also handle a combination of the two
extensions and the resulting program can again be solved
by MASM such that each iteration takes linear time.
4.1 Wire Area Consideration

Besides delay, we sometimes want to consider some
other objectives as well. In this subsection, we will use
wire area as an example and we will consider three cases:

1. Minimization of a weighted sum of delay and area:
First, note that

wire area = ZhlllmH + ot Bplggiyn = nTi
k=0

where h = (A1, ..., hn, .. ... Jhi, ... hy)T. Then
the objective will be (17 ®1/2+ pT1)+ (1 —p)h'l =
(/21" B+ (up™ + (1 — p)h™)H1 for some weight p.
So the problem can be formulated as follows:

minimize  (p/2)I7 @1+ (up” + (1 — p)h™ )l
subject to I3 + -+ lmy1yn = L
L >0for1 <i<(m+1)n

Note that this program is of the same form as (1)
and hence can be solved by MASM as in Section 2.3.

2. Delay minimization with bounded area:
The problem can be formulated as follows:

el 4 pT1

b+ +lmgyn =1L

h'L < barea

L >0for 1 <i<(m+1)n

minimize
subject to

where b,.., 1s the area bound. We can solve the
program by active set method. If the area constraint
1s inactive, that iteration can be solved in closed
form as before. If the area constraint is active, the
matrix T' 4 in (4) for that iteration will contain two



rows. However, it is clear that it can still be solved
in linear time. In fact, it is not difficult to see that
if T4 has O(1) rows (i.e. we have O(1) nontrivial
equalities), the iteration still takes linear time.

3. Area minimization with bounded delay:
This case is not as simple since the resulting math-
ematical program is no longer a quadratic program:

n'l

%lT(I)l + pTl < bdelay
ll++l(m+1)n =17

L >0for 1 <i<(m+1)n

minimize
subject to

where bgeray 1 the delay bound. We can solve this
problem by the Lagrangian relaxation technique as
in [1]. The relaxed program will be as follows:

minimize
subject to

th + A(%lT(I)l + pTl - bdelay)
ll++l(m+1)n =17
L >0for 1 <i<(m+1)n

where A is the Lagrange multiplier. It is again of the
form as (1) and hence can be solved by MASM.

4.2 Additional Constraints

Sometimes, we may want to have some constraints on
the solution. We can do this by adding constraints to the
convex quadratic program. For example, we may require
that the section of the wire within a distance I’ from the
sink cannot be wider than h’. If ¢ is the index such that
hi > R’ > hyyq, then the corresponding program will be:

e+ pTl

L+ +lppee <L =0
b+ +lmgin =1L

L >0for 1 <i<(m+1)n

minimize
subject to

As we mentioned above, as long as O(1) constraints are
added, the resulting program can be handled by MASM
such that each iteration can be done in linear time.

5 Experimental Results

In this section, we will show that the algorithm MASM
is efficient in practice. We have implemented the version
for delay minimization by simultaneous buffer insertion
and wire sizing in C. We run it on an IBM PowerPC 25
using several different values for the number of choices
of wire width n and for the number of buffers m. For
each pair of values of n and m, we run our algorithm on
100 instances with Rp, Cr, B1,..., B, H, and L being
randomly generated. The average number of iterations
and CPU time over the 100 instances are reported in
Table 1.

Nowadays, the values of n and m that actually used
are usually less than 10. So the running time is negli-
gible. Even for an instance of 100 choices of wire width

# width choices  # buffers  # variables | Algorithm MASM
n m  (m+1)n | #iter. CPU(s)
10 0 10 3.93 0.00
10 10 110 11.34 0.00
10 40 410 12.74 0.01
10 70 710 13.18 0.03
10 100 1010 13.31 0.04
40 0 40 15.79 0.00
40 10 440 40.19 0.05
40 40 1640 41.89 0.20
40 70 2840 | 42.36 0.35
40 100 4040 42.64 0.49
70 0 70 31.22 0.01
70 10 770 68.39 0.15
70 40 2870 71.01 0.60
70 70 4970 71.65 1.05
70 100 7070 72.24 1.53
100 0 100 42.61 0.01
100 10 1100 96.37 0.31
100 40 4100 | 100.16 1.24
100 70 7100 | 101.21 2.14
100 100 10100 | 101.69 3.06

Table 1: The average number of iterations and CPU time of
the algorithm MASM for simultaneous buffer insertion and
wire sizing.

and 100 buffers, the algorithm still takes only 3 seconds.
An interesting observation is that the number of itera-
tions is about n (except when m = 0) and is basically
independent of m. So for Problem 1/, algorithm MASM
runs in O(mn?) time in practice.

There are also many public domain or commercial
software systems that can solve convex quadratic pro-
grams (e.g. LOQO, CPlex, OSL, MINO). LOQO is one
of the fastest system available. So we compare the run-
ning time of LOQO with our algorithm MASM. We no-
tice that MASM, being based on the observations in Sec-
tion 2.3, 1s much faster than LOQO. For small problems
(n = 10 and m = 10), our algorithm is about 15 times
faster. For larger problems (n = 100 and m = 100), our
algorithm is more than 30 times faster.

6 Discussion

Tree topology: For weighted delay objective, our al-
gorithm can be applied to handle nets with tree topol-
ogy by a similar technique as in [5]. That is we use an
iterative algorithm to optimize the tree edges one at a
time. At each time we manipulate an edge, we keep all
the other edges fixed and apply our algorithm to that
edge. For other objectives like minimizing maximum de-
lay or minimizing area with delay bounds, we can apply
the Lagrangian relaxation technique as in [5] to reduce
the problems to a problem of minimizing weighted de-



lay. For these cases, we need to fix the number of buffers
used on each wire beforehand. If only the total number
of buffers to be used is given, a possible approach would
be to combine dynamic programming with our algorithm
to distribute the buffers among the edges.

Simultaneous buffer insertion, buffer sizing and wire
sizing: If choices of buffers of several different sizes are
allowed, we can find the optimal solution by trying all
possible combinations of buffer sizes. For each combina-
tion, we can use our algorithm to handle buffer insertion
and wire sizing. As our algorithm is really fast, the total
running time will still be very short. For example, if we
have 10 choices of wire width, 6 choices of buffer size and
4 buffers to be inserted (6* = 1296 combinations), the
total running time to find the optimal solution is only
2.05 seconds. So our algorithm can even be used for si-
multaneous buffer insertion, buffer sizing and wire sizing
in practice.

Note that the number of segments by our approach is
independent of the wire length. For the example above,
our problem has only (4 4+ 1) x 10 = 50 segments. For
the traditional approach, in order to obtain comparable
accuracy, a longer wire needs to be divided into more
segments. For a wire of 3000um long, if we divide it into
1pm segments, we will have 3000 segments. The running
time will be long if we use dynamic programming to solve
this problem.

Of course, 1t would be nice if we can have better tech-
nique to handle buffer sizing than trying all possibilities.
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