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Abstract
In this paper� we present a completely new approach to the

problem of delay minimization by simultaneous bu�er inser�

tion and wire sizing for a wire� We show that the problem can

be formulated as a convex quadratic program� which is known

to be solvable in polynomial time� Nevertheless� we explore

some special properties of our problem and derive an optimal

and very e�cient algorithm to solve the resulting program�

Given m bu�ers and a set of n discrete choices of wire width�

the running time of our algorithm is O�mn�� and is indepen�

dent of the wire length in practice� For example� an instance

of ��� bu�ers and ��� choices of wire width can be solved in 	

seconds� Besides� our formulation is so versatile that it is easy

to consider other objectives like wire area or power dissipation�

or to add constraints to the solution� Also� wire capacitance

lookup tables� or very general wire capacitance models which

can capture area capacitance� fringing capacitance� coupling

capacitance� etc� can be used�

� Introduction
In the past� gate delay is the dominating factor in

circuit design� However� as the feature size of VLSI de�
vices continues to decrease� interconnect delay becomes
increasingly important� Nowadays� feature size has been
down to �����m in advance technology� Interconnect
delay has become the dominating factor in determining
system performance� In many systems designed today�
as much as ��� to 	�� of clock cycle are consumed by
interconnect delay 
��� It is predicted in 

�� that the fea�
ture size will be reduced to ��
��m by 
��� and ��
��m
by ����� So we expect the signi�cance of interconnect
delay will further increase in near future�

In this paper� we will mainly consider the simultane�
ous bu�er insertion and wire sizing problem as stated in
Problem 
� �Elmore delay model 

�� is used for delay
calculation�� Both bu�er insertion and wire sizing have
been shown to be e�ective techniques to reduce intercon�
nect delay and many work has been done during the past
few years� See below for a brief overview or see 
�� for a
comprehensive survey�

For wire sizing alone� almost all the previous work
gives an approximate solution by the approach of divid�
ing the wire into small �xed�length segments and opti�

PROBLEM �� The Simultaneous Bu�er Insertion and
Wire Sizing Problem

Given� wire length L� driver resistance RD� load capac�
itance CL� a set H � fh�� � � � � hng of choices of
wire width such that h� � � � � � hn� and m bu�ers
B�� � � � �Bm�

Determine� the positions x�� � � � � xm at which the
bu�ers are inserted and the wire width f�x� at each
point x along the wire such that the delay from source
to sink is minimized�
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mizing the width of each segment iteratively �e�g� 
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� ��� �
� ��� �� In order to obtain accurate
results� the wire usually needs to be divided into a large
number of �much more than n� segments� 
�� �� 
�� 
��
consider a variant such that the set H of choices of wire
width is a continuous interval� Therefore� the resulting
wire width function f�x� is continuous� However� a con�
tinuous shape is expensive to fabricate�

Not much work has been done on simultaneous bu�er
insertion and wire sizing� Recently� 

�� generalizes the
dynamic programming algorithm in 
��� to handle bu�er
insertion and wire sizing simultaneously� Their algo�
rithm also allows choices of bu�ers of di�erent size and
includes power consideration� However� their algorithm
runs in pseudo�polynomial time and requires a substan�
tial amount of memory� 
�� also considers bu�er insertion�
bu�er sizing and wire sizing simultaneously and a closed
form optimal solution is obtained� However� in that pa�
per� only wire area capacitance is considered �terms like
wire fringing capacitance are ignored��

We present a completely new approach in this paper�
Instead of solving Problem 
 directly� we will solve an
equivalent problem which will be introduced later �see
Problem 
� in Section ��� Our new approach has many
advantages over the previous approaches�


� The problem of our approach has much less vari�



ables than the problem of the traditional approach
of dividing a wire into small �xed�length segments�
If m bu�ers are to be inserted and a set of n choices
of wire width is given� the problem we formulated
will have �m�
�n variables no matter how long the
wire is� As in practice� usually only a few bu�ers
and a few choices for the wire width are allowed�
�m� 
�n is a small number� Moreover� the problem
of our approach is completely equivalent to Problem

 �not an approximation��

�� The problem of our approach can be solved opti�
mally and very e�ciently even for large m and n�
We will show that our problem is a convex quadratic
program� Convex quadratic programming has been
well studied and can be solved e�ciently by many
public domain or commercial software systems� Nev�
ertheless� we explore some special properties of our
problem and derive an even more e�cient iterative
algorithm such that each iteration needs only linear
time� In practice� the algorithm runs in about n iter�
ations only� For example� an instance of 
�� bu�ers
and 
�� choices of wire width �i�e� 
�
�� variables�
can be solved in � seconds by our algorithm�

�� Bu�er insertion is generally considered a hard prob�
lem and usually some heuristics or dynamic pro�
gramming are needed to handle it� However� it is
interesting to note how naturally and easily bu�er
insertion is handled in our approach� We will see
that it is no more di�cult than wire sizing alone�

�� Besides delay� our formulation can be easily ex�
tended to consider other objectives like wire area or
power dissipation� For example� we can optimally
solve the problems of minimizing a weighted sum of
delay and wire area� minimizing delay with bounded
area� minimizing area with bounded delay� etc� Our
formulation also allows adding constraints to the so�
lution� Moreover� our e�cient algorithm can still be
applied to get optimal results�

�� We can use very general wire capacitance models
which can capture area capacitance� fringing capac�
itance� coupling capacitance �the capacitance due to
an adjacent parallel wire�� etc� A wire segment is
modeled as a ��type RC circuit as shown in Fig�
ure 
� The capacitance of a wire segment of width
h and length l is given by c�h�l� where c�h� is the
unit length wire capacitance for a segment of width
h� The only restriction on c is that it has to be an
increasing function from R� to R�� For example�
to model wire area capacitance� wire fringing capac�
itance and coupling capacitance at the same time�
suppose the distance to an adjacent parallel wire is

d � h when the wire width is h� Then we can set
c�h� � c�h � cf � cc��d � h�� where c� is the unit
wire area capacitance� cf is the unit wire fringing
capacitance and cc is the unit wire coupling capac�
itance� The values of c�h� for each h in H can also
be obtained from a lookup table�
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Figure 
� The model of a wire segment of length l and width

h by a ��type RC circuit� r� is the unit wire resistance� c�h�
is the wire capacitance per unit length for a segment of width

h� We assume c�h� is an increasing function in this paper�

The paper is organized as follows� In Section �� we will
�rst consider the problem of wire sizing without bu�er
insertion� Once the formulation and the algorithm for
wire sizing is understood� the extension to simultaneous
bu�er insertion and wire sizing will be easy and will be
discussed in Section �� In Section �� we will further ex�
tend our results to consider other objectives like wire
area or power� and to handle additional constraints to
the solution� In Section �� some experimental results to
show the e�ciency of our algorithm will be presented� In
Section �� we discuss some directions for future research�

� Wire Sizing
For the rest of the paper� we will use uppercase bold�

face letters to denote matrices and lowercase boldface
letters to denote vectors� We will use the convention
that indices of matrices and vectors start from one� To
simplify the presentation� if we refer to an element of a
matrix or a vector such that the index is out of range�
we assume that the value is zero�

��� Our New Approach

We want to solve the wire sizing problem as stated in
Problem �� where the optimal wire width is represented
by a step function f � 
�� L� � H� Instead of solving
Problem � directly� we approach the problem by looking
at an equivalent problem� Before we introduce the new
problem� we will �rst prove that f must be a decreasing
function� A similar monotone property for simpler wire
capacitance model and �xed�length segments has been
proved in 


��

Lemma � The optimal wire sizing function f is a de�
creasing function�

Proof outline� Suppose f changes from a smaller value
h to a larger value h� at a point of a distance l from
the source� Therefore� f�x� � h for l � � � x � l and
f�x� � h� for l � x � l � � for some � � �� Let g



PROBLEM �� The Wire Sizing Problem

Given� wire length L� driver resistance RD� load capac�
itance CL� a set H � fh�� � � � � hng of choices of wire
width such that h� � � � � � hn�

Determine� the wire width f�x� at each point x along
the wire such that the delay from source to sink is
minimized�
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be another wire sizing function de�ned as g�x� � h� for
l� � � x � l� g�x� � h for l � x � l� � and g�x� � f�x�
otherwise� We can show that g is better than f � which
contradicts to the fact that f is optimal� �

Instead of solving Problem � directly� we will solve
Problem �� below� In Problem ��� the wire is divided
into n segments such that the width of the ith segment is
hi� and the length of each segment is to be determined�
By Lemma 
� it is clear that Problem �� is equivalent
to Problem �� Note that our new approach divides the
wire into only n segments and gives an optimal solution
to the original problem� If we approach Problem � by
dividing the wire into small �xed�length segments� the
solution will not be exact� In order to obtain a good
approximation� the wire needs to be divided into much
more than n segments�

PROBLEM �
�
� The Wire Sizing Problem of Our Ap�

proach �equivalent to Problem ��

Given� wire length L� driver resistance RD� load capac�
itance CL� a set H � fh�� � � � � hng of choices of wire
width such that h� � � � � � hn�

Determine� the segment lengths li � 	 for 
 � i � n

such that the delay from source to sink is minimized�

2l ll1 n

n

1h
2

DR

CL

h

L

h

��� Problem formulation

We will show in this subsection that Problem �� can
be formulated as a convex quadratic program�

Let ci � c�hi� for 
 � i � n� Then for Problem ��� the

delay from source to sink is

D � RD�c�l� � c�l� � � � �� cnln � CL�

�
r�l�
h�

�
c�l�
�

� c�l� � � � �� cnln � CL�

�
r�l�
h�

�
c�l�
�

� c�l� � � � �� cnln � CL�
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l
T�l � �T l � RDCL

where

� �

�
BBBBB�

c�r��h� c�r��h� c�r��h� � � � cnr��h�
c�r��h� c�r��h� c�r��h� � � � cnr��h�
c�r��h� c�r��h� c�r��h� � � � cnr��h�

���
���

���
� � �

���
cnr��h� cnr��h� cnr��h� � � � cnr��hn

�
CCCCCA
�

� �

�
BBBBB�

RDc� � CLr��h�
RDc� � CLr��h�
RDc� � CLr��h�

���
RDcn � CLr��hn

�
CCCCCA

and l �

�
BBBBB�

l�
l�
l�
���
ln

�
CCCCCA
�

So Problem �� can be formulated as follows�

minimize �
� l

T�l � �T l

subject to l� � � � �� ln � L
li � � for 
 � i � n

�
�

This is a quadratic program� In general� quadratic pro�
gram is a mathematical program with a quadratic ob�
jective function subject to linear equality and inequality
constraints� If the matrix � is positive de�nite� it is
called a convex quadratic program� Note that quadratic
programming is NP�hard 

�� but convex quadratic pro�
gramming can be solved in polynomial time 

	�� In the
following� we will prove that the quadratic program �
�
is convex� First� we make the following two de�nitions�

De�nition � �Symmetric Decomposable Matrix�
Let Q � �qij� be an n � n symmetric matrix� If for
some � � �	�� � � � � 	n�T and v � �v�� � � � � vn�T such that
� � 	� � � � � � 	n� qij � qji � 	ivivj for i � j� then Q

is called a symmetric decomposable matrix� We denote
Q � SDM ���v��

De�nition � �Upper Triangular Decomposable Matrix�
Let U � �uij� be an n � n upper triangular matrix� If
for some � � �
�� � � � � 
n�

T and v � �v�� � � � � vn�
T such

that 
i � � for all i� uij � 
ivj for i � j and uij � � for
i � j� then U is called an upper triangular decomposable
matrix� We denote U � UTDM ���v��



Lemma � � in ��� is symmetric decomposable�

Proof�

Let � � �
r�
c�h�

� � � � �
r�

cnhn
�T and v � �c�� � � � � cn�T � Note

that � �
r�
c�h�

� � � � �
r�

cnhn
� Then � � SDM ���v�� �

Lemma � If Q is symmetric decomposable� then Q �
UTU where U is upper triangular decomposable� In
particular� if Q � SDM ���v�� then Q � UTU where
U � UTDM ���v�� 
i �

p
	i � 	i�� for 
 � i � n�

Proof outline�

Can be veri�ed by multiplying UT and U � �

Lemma � If Q is symmetric decomposable� then Q is
positive de�nite�

Proof� Let Q � SDM ���v�� By Lemma �� Q � U
T
U

where U � UTDM ���v� for some �� For any x �� 	�
let y � Ux� Note that y �� 	 as U is nonsingular and
x �� 	� So xTQx � xTUTUx � yTy � �� In other
words� Q is positive de�nite� �

By Lemma �� Lemma � and 

	�� we have Theorem 
�

Theorem � The quadratic program ��� is convex� and
hence can be solved in polynomial time�

��� Algorithm

In the following� we will make some interesting obser�
vations on the convex quadratic program �
� and then
derive a very e�cient algorithm to solve it based on the
idea of active set method� Active set method is a classi�
cal technique for constrained optimization problems� It is
also one of the most popular methods to solve quadratic
programming� It has been shown to be e�cient in prac�
tice� We will �rst give a brief outline on how to solve
convex quadratic programming by active set method�
See 

�� for details�

If a convex quadratic program consists of equality con�
straints only� it is particularly easy to solve� Consider the
following program�

minimize �
�
lT�l � �T l

subject to 
l � b
���

where� is positive de�nite and 
 is of full rank� Consider
the associated Lagrangian�

��l��� �



�
lT�l � �T l � �T �
l � b�

The Lagrange necessary conditions of optimality are
���l�����li � � and ���l�����
i � � for all i� The con�
ditions can be written in matrix form as follows�

�l � 
T�� � � 	


l � b � 	

Since � is positive de�nite and 
 is of full rank� it can
be shown that the conditions can be uniquely solved�

� � ��
���
T ����
���� � b�

l � ����
T������
���

Now consider a general convex quadratic program�
which can have both equality and inequality constraints�
If we solve the program by ignoring all the inequality
constraints and the solution obtained is feasible with re�
spect to all constraints� then it should be the optimal
solution of the original program� If it is non�feasible� the
optimal solution should be on the boundary of the set of
feasible solutions� Active set method is a systematic way
to search for the optimal solution on the boundary�

The idea underlying active set method is to partition
the inequality constraints into two groups� active and
inactive� In each iteration� those active constraints are
treated as equality constraints and those inactive con�
straints are essentially ignored �i�e� the feasible space
is restricted to some boundary�� The resulting equality
constrained program is solved� If the solution is infeasi�
ble with respect to the original program� some inactive
constraints will be added to the set of active constraints�
If the solution is feasible but not optimal �i�e� some La�
grange multipliers are negative�� some constraints will be
removed from the current active set� The process is re�
peated until the optimal solution is found �in that case�
the active set will de�ne the boundary the optimal solu�
tion is on��

Therefore if we apply active set method to �
�� we
need to solve an equality constrained problem in the form
of ��� �i�e� compute ���� in each iteration� Each iteration
can be done in cubic time in general� However� we will
show below that ��� can be solved in linear time in our
case�

First� note that all the inequality constraints in �
�
are of the form li � �� If we set li � � and substitute
it into �
�� the resulting program is of exactly the same
form as �
� but of smaller size� In fact� if for some it�
eration� all constraints except lj� � �� � � � � ljr � � are in
the active set A� then the equality constrained program
corresponding to that iteration will be equivalent to the
following reduced program�

minimize �
�l

T
A�AlA � �TAlA

subject to 
AlA � L
���

where lA � �lj� � � � � � ljr�
T � 
A � �
 
 � � � 
��

�A � �RDcj� � CLr��hj� � � � � � RDcjr � CLr��hjr�
T �

and �A is the symmetric decomposable matrix cor�
responding to A �i�e� �A � SDM ��A�vA� with

�A � �
r�

cj�hj�
� � � � �

r�
cjrhjr

�T and vA � �cj� � � � � � cjr�
T ��



As before� the Lagrange necessary conditions of optimal�
ity for ��� are


A � ��
A�
��
A

T
A
����
A�

��
A
�
A
� L�

lA � ����
A

T
A

A ����

A
�
A

The crucial observation is that ���
A

is tridiagonal� as
proved in the following lemma�

Lemma � If Q is symmetric decomposable� then Q��

is tridiagonal� In particular� if Q � SDM ���v�� then
Q�� � ��ij� where �ii � 
���	i � 	i���v

�
i � � 
���	i�� �

	i�v
�
i �� �i�i�� � �i���i � �
���	i�� � 	i�vivi��� for


 � i � n � 
� �nn � 
���	n � 	n���v�n�� and �ij � �
otherwise�

Proof outline� Can be veri�ed by multiplying the ma�
trices Q � SDM ���v� and ��ij� de�ned above� �

By Lemma � and Lemma �� we have the Theorem ��

Theorem � ���
A in �	� is tridiagonal�

Let ���
A

� ��ij� where �ij is given by Lemma � and
let �A � ���� � � � � �r�

T � Then the Lagrange optimality
conditions for ��� can be written in closed form as follows�


A � �

L �
rX

i��

��i���i � �ii � �i���i��i

rX
i��

��i���i � �ii � �i���i�

lji � ���i���i�i�� � �ii�i � �i���i�i���
� ��i���i � �ii � �i���i�
A for 
 � i � r

Obviously� lj � � for all j �	 fj�� � � � � jrg� Once l is found�
it is not di�cult to see that � in ��� can also be found in
linear time� Hence ��� can be computed in linear time�
The algorithm can be summarized as below�

Algorithm MASM �Modi�ed Active Set Method�

� Set the active set A � 
�
�� repeat

�� Solve for � and l with respect to A
�� by our special technique�
�� if �l �� 	� then �� check for feasibility ��

�� Add some inactive constraints to A�
	� else if �� �� 	� then �� check for optimality ��

�� Remove some active constraints from A�
�� until �l � 	 and � � 	�

Theorem � The wire sizing problem �Problem 
� or
equivalently� Problem ��� can be solved by algorithm
MASM such that each iteration takes O�n� time�

The number of iterations of the algorithm depends on
how constraints are added to and remove from A� For
step �� we add all the inactive constraints corresponding
to negative segment lengths� For step �� we remove the
one corresponding to the most negative 
j � In Section ��
we will see for this implementation� the number of itera�
tions of our algorithm MASM is less than n in practice�

� Simultaneous Bu�er Insertion and
Wire Sizing

In this section� simultaneous bu�er insertion and wire
sizing will be discussed� m bu�ers B�� � � � � Bm are given
and they will be inserted into a wire in this order �withB�

nearest to the source�� A bu�er is modeled as a switch�
level RC circuit as shown in Figure �� For convenience�
we treat the source and the sink as bu�ers and we call
the source B� and the sink Bm���

c
B

r

r

B

B

dB
B

Figure �� The model of a bu�er B by a switch�level RC

circuit� cB� rB and dB are the input capacitance� output

resistance and the intrinsic delay of bu�er B respectively�

We want to solve Problem 
 introduced in Section 
�
Note that the wire width is not necessary to be decreas�
ing across a bu�er� However� the sizing problem of the
piece of wire between Bk and Bk�� for any k is basically
the same as Problem � discussed in Section � �except
that the length of that piece of wire is not �xed�� So by
Lemma 
� the optimal wire sizing function between two
bu�ers will still be a decreasing step function� Hence�
we can approach the problem as before by dividing the
piece of wire between every pair of consecutive bu�ers
into n segments of decreasing width� and determining
the length of each segment� Instead of having a total
length constraint for each piece of wire between bu�ers�
we will have a single constraint specifying that the sum
of all segment lengths equals L� See Problem 
� below�

Let �� be the matrix corresponding to the coe�cients
of the quadratic terms and �k be the vector correspond�
ing to the coe�cients of the linear terms for the delay
from Bk to Bk��� Let

� �

�
BBB�

�� �
��

� � �

� ��

�
CCCA and � �

�
BBB�

��
��
���
�m

�
CCCA �



PROBLEM �
�
� The Simultaneous Bu�er Insertion and

Wire Sizing Problem of Our Approach �equivalent to
Problem 
�

Given� wire length L� driver resistance RD� load capac�
itance CL� a set H � fh�� � � � � hng of choices of
wire width such that h� � � � � � hn� and m bu�ers
B�� � � � �Bm�

Determine� the segment lengths li � 	 for 
 � i �
�m � 
�n such that the delay from source to sink
is minimized�

l (m+1)nn+121l ll
CL

L

B1 mB
1

nh

h

RD

Then the delay from source to sink is

D �



�
l
T�l � �T l �

mX
k��

rBk
cBk��

�
mX
k��

dBk

So Problem 
� can be formulated as follows�

minimize �
� l

T�l � �T l

subject to l� � � � �� l�m���n � L
li � � for 
 � i � �m� 
�n

which is of the same form as �
�� � is clearly positive
de�nite as �� is positive de�nite� Hence the quadratic
program is again convex� In addition� for each iteration�
we can �nd l and � as before by reducing the equality
constrained program as in ��� to one as in ���� The ma�
trix �A will be�

�A �

�
BBB�

�A� �
�A�

� � �

� �Am

�
CCCA

where �Ak is the symmetric decomposable matrix cor�
responding to the set of active constraints for segments
between Bk and Bk��� So

���
A

�

�
BBB�

���
A�

�

���
A�

� � �

� ���
Am

�
CCCA

Therefore ���
A

is also tridiagonal as ���
A�
����

A�
� � � � ����

Am

are all tridiagonal� Hence� Problem 
� can be solved as
before�

Theorem � The simultaneous bu�er insertion and wire
sizing problem �Problem �� or equivalently� Problem 
��
can be solved by algorithm MASM such that each iteration
takes O�mn� time�

We will see in Section � that the number of iterations of
our algorithm MASM is about n in practice�

� Extensions
In the following two subsections� we will extend our

result for simultaneous bu�er insertion and wire sizing
to consider wire area �and hence power dissipation�� and
to handle additional constraints to the solution respec�
tively� We will show that for both extensions� the result�
ing problem can still be solved by MASM such that each
iteration can be done in linear time� Besides� it is easy
to see that we can also handle a combination of the two
extensions and the resulting program can again be solved
by MASM such that each iteration takes linear time�

��� Wire Area Consideration

Besides delay� we sometimes want to consider some
other objectives as well� In this subsection� we will use
wire area as an example and we will consider three cases�


� Minimization of a weighted sum of delay and area�
First� note that

wire area �
mX
k��

h�lkn�� � � � �� hnl�k���n � hT l

where h � �h�� � � � � hn� � � � � � � � h�� � � � � hn�T � Then
the objective will be ��lT�l����T l���
���hT l �
�����lT�l� ���T � �
� ��hT �l for some weight ��
So the problem can be formulated as follows�

minimize �����lT�l � ���T � �
� ��hT �l
subject to l� � � � �� l�m���n � L

li � � for 
 � i � �m � 
�n

Note that this program is of the same form as �
�
and hence can be solved by MASM as in Section ����

�� Delay minimization with bounded area�
The problem can be formulated as follows�

minimize �
�l

T�l � �T l

subject to l� � � � �� l�m���n � L

h
T
l � barea

li � � for 
 � i � �m � 
�n

where barea is the area bound� We can solve the
program by active set method� If the area constraint
is inactive� that iteration can be solved in closed
form as before� If the area constraint is active� the
matrix 
A in ��� for that iteration will contain two



rows� However� it is clear that it can still be solved
in linear time� In fact� it is not di�cult to see that
if 
A has O�
� rows �i�e� we have O�
� nontrivial
equalities�� the iteration still takes linear time�

�� Area minimization with bounded delay�
This case is not as simple since the resulting math�
ematical program is no longer a quadratic program�

minimize h
T
l

subject to �
�l

T�l � �T l � bdelay
l� � � � �� l�m���n � L
li � � for 
 � i � �m � 
�n

where bdelay is the delay bound� We can solve this
problem by the Lagrangian relaxation technique as
in 

�� The relaxed program will be as follows�

minimize h
T
l � 
���l

T�l � �T l � bdelay�
subject to l� � � � �� l�m���n � L

li � � for 
 � i � �m � 
�n

where 
 is the Lagrange multiplier� It is again of the
form as �
� and hence can be solved by MASM�

��� Additional Constraints
Sometimes� we may want to have some constraints on

the solution� We can do this by adding constraints to the
convex quadratic program� For example� we may require
that the section of the wire within a distance l� from the
sink cannot be wider than h�� If t is the index such that
ht � h� � ht��� then the corresponding program will be�

minimize �
� l

T�l � �T l

subject to l� � � � �� lmn�t � L� l�

l� � � � �� l�m���n � L
li � � for 
 � i � �m� 
�n

As we mentioned above� as long as O�
� constraints are
added� the resulting program can be handled by MASM
such that each iteration can be done in linear time�

� Experimental Results
In this section� we will show that the algorithmMASM

is e�cient in practice� We have implemented the version
for delay minimization by simultaneous bu�er insertion
and wire sizing in C� We run it on an IBM PowerPC ��
using several di�erent values for the number of choices
of wire width n and for the number of bu�ers m� For
each pair of values of n and m� we run our algorithm on

�� instances with RD� CL� B�� � � � � Bm� H� and L being
randomly generated� The average number of iterations
and CPU time over the 
�� instances are reported in
Table 
�

Nowadays� the values of n and m that actually used
are usually less than 
�� So the running time is negli�
gible� Even for an instance of 
�� choices of wire width

	 width choices 	 bu
ers 	 variables Algorithm MASM

n m �m� 
�n � iter� CPU�s�


� � 
� ���� ����

� 
� 
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��� ����

� �� �
� 
��	� ���
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Table 
� The average number of iterations and CPU time of

the algorithm MASM for simultaneous bu�er insertion and

wire sizing�

and 
�� bu�ers� the algorithm still takes only � seconds�
An interesting observation is that the number of itera�
tions is about n �except when m � �� and is basically
independent of m� So for Problem 
�� algorithm MASM
runs in O�mn�� time in practice�

There are also many public domain or commercial
software systems that can solve convex quadratic pro�
grams �e�g� LOQO� CPlex� OSL� MINO�� LOQO is one
of the fastest system available� So we compare the run�
ning time of LOQO with our algorithm MASM� We no�
tice that MASM� being based on the observations in Sec�
tion ���� is much faster than LOQO� For small problems
�n � 
� and m � 
��� our algorithm is about 
� times
faster� For larger problems �n � 
�� and m � 
���� our
algorithm is more than �� times faster�

� Discussion

Tree topology� For weighted delay objective� our al�
gorithm can be applied to handle nets with tree topol�
ogy by a similar technique as in 
��� That is we use an
iterative algorithm to optimize the tree edges one at a
time� At each time we manipulate an edge� we keep all
the other edges �xed and apply our algorithm to that
edge� For other objectives like minimizing maximum de�
lay or minimizing area with delay bounds� we can apply
the Lagrangian relaxation technique as in 
�� to reduce
the problems to a problem of minimizing weighted de�



lay� For these cases� we need to �x the number of bu�ers
used on each wire beforehand� If only the total number
of bu�ers to be used is given� a possible approach would
be to combine dynamic programming with our algorithm
to distribute the bu�ers among the edges�

Simultaneous bu�er insertion� bu�er sizing and wire
sizing� If choices of bu�ers of several di�erent sizes are
allowed� we can �nd the optimal solution by trying all
possible combinations of bu�er sizes� For each combina�
tion� we can use our algorithm to handle bu�er insertion
and wire sizing� As our algorithm is really fast� the total
running time will still be very short� For example� if we
have 
� choices of wire width� � choices of bu�er size and
� bu�ers to be inserted ��� � 
��� combinations�� the
total running time to �nd the optimal solution is only
���� seconds� So our algorithm can even be used for si�
multaneous bu�er insertion� bu�er sizing and wire sizing
in practice�

Note that the number of segments by our approach is
independent of the wire length� For the example above�
our problem has only �� � 
� � 
� � �� segments� For
the traditional approach� in order to obtain comparable
accuracy� a longer wire needs to be divided into more
segments� For a wire of �����m long� if we divide it into

�m segments� we will have ���� segments� The running
time will be long if we use dynamic programming to solve
this problem�

Of course� it would be nice if we can have better tech�
nique to handle bu�er sizing than trying all possibilities�
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