A MATRIX SYNTHESIS APPROACH TO THERMAL PLACEMENT*

Chris C. N. Chu and D. F. Wong

cnchu@cs.utexas.edu and wong@cs.utexas. edu

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712.

ABSTRACT

In this paper, we consider the thermal placement problem
for gate arrays. We introduce a new combinatorial optimiza-
tion problem MSP (Matrix Synthesis Problem) to model the
thermal placement problem. Given a list of mn non-negative
real numbers and an integer ¢, MSP constructs a m X n ma-
trix out of the given numbers such that the maximum sum
among all txt sub-matrices is minimized. We show that MSP
is NP-complete and present several provably good approxi-
mation algorithms for the problem. We also demonstrate
that our thermal placement strategy is flexible enough to al-
low simultaneous consideration of other objectives such as
wiring.

1. INTRODUCTION

High performance circuits consume a considerable amount of
power due to increases of frequency, bandwidth, and system
integration. For examples, the two recent high-performance
chips, Alpha 21164 and PowerPC 620, consume 50 W and 30
W, respectively, on 3 cm? dies. It can be extrapolated that a
10 cm? next-generation microprocessor, clocked at 500 MHz
would consume 300 W [6]. Consumed power is converted
directly into dissipated heat. In the past decade, heat pro-
duced by a chip has increased from 2.2 to 10 W/cm? due to
the continuous increase of the clock frequency and the total
number of transistors [8]. Higher temperature not only af-
fects circuit performance directly by slowing down the tran-
sistors on CMOS chips but also decreases their reliability.
A circuit with considerable power consumption requires ex-
tra expensive cost to remove heat at the packaging level, and
therefore the reduction of power dissipation is required at the
chip design stages. (See [6] for a survey of current research
efforts in power minimization in IC design.) Even when the
total power consumption of a chip is constrained, an un-
evenly distributed heat dissipation by the gates in the chip
may produce hot spots which can lead to reliability problems.
It 1s also desirable to have an even temperature distribution
for the temperature-sensitive circuit (whose characteristic,
such as the gain factor, 8, of a CMOS or bipolar circuit,
affects its output). Therefore, during physical design of a
VLSI chip, it is important to place the gates such that heat
dissipation by the gates are evenly distributed.

*This work was partially supported by a grant from the Avant!
Corporation.

The thermal placement problem has been studied in the
past for placing chips during the packaging stage (for PCBs
and MCMs) [2, 4, 5]. However, since thermal placement of
gates within a single chip was not of major concern in the
past, existing placement algorithms [7] only focus on mini-
mizing area and delay but do not consider heat dissipation.
One exception is [1] but it only addresses thermal issues dur-
ing IC floorplanning. In this paper, we consider the ther-
mal placement problem for gate arrays. We introduce a new
combinatorial optimization problem MSP (Matrix Synthesis
Problem) to model the thermal placement problem.

Basically, MSP is to synthesize a matrix out of a given list
of numbers such that no sub-matrix of a particular size has a
large sum. In this paper, sub-matrix means those consisting
of consecutive rows and columns. For any matrix M, let
S¢(M) be the set of all ¢ x ¢ sub-matrices of M. Let o(M)
be the sum of all entries in M. Let p;(M) = max o(5).

SESH(M)
MSP can be defined formally as follows:

MATRIX SYNTHESIS PROBLEM (MSP)
INSTANCE: Integers ¢, m, n, and a list of mn non-
negative real numbers xo, x1,. .., Tmn—1.

QUESTION: Synthesize a m x n matrix M out of

%0, ..., Tmn—1 such that p¢(M) is minimized.

See Figure 1 for an example.

0] 3|7

~N | W | w | oo
N | B~ w0

1
81710 0
4| 8| 2 0
3|13 2

@ (b)

Figure 1. An example of MSP with m = 4,n = 3 and t = 2.
The problem is to synthesize a 4 X 3 matrix out of 12 numbers
(8,8,7,7,4,3,3,3,2,1,0,0) and to minimize the maximum sum over
all 2 X 2 sub-matrices. (a) is a bad solution (maximum sum is 27).
(b) is an optimal solution (maximum sum is 13). The sub-matrices
with maximum sum are shaded.

It is not difficult to see that MSP models the thermal place-
ment problem for gate arrays. We represent the amount of
heat generated by each gate by a non-negative real number.
(If we have less gates than the number of array slots, we can
add some zeros.) A sub-matrix in S;(M) corresponds to a
region of size ¢t X t on the chip. The sub-matrix with the
largest sum corresponds to the hottest region on the chip.
So MSP is equivalent to finding a placement of the gates
such that the temperature of the hottest region is the lowest
among all possible placements.

The parameter ¢ is to model how good the heat transfer
is. If the heat transfer is poor such that the effect of a gate is
mostly on neighbor gates, then MSP with ¢ = 2 probably is
a good model to use. On the other hand, if the heat transfer
is good, we may want to consider larger regions and hence a
larger t.

A summary of the remainder of this paper is given below.
In Section 2, we show that MSP with any fixed ¢ > 2 is
NP-complete. (MSP with ¢ = 1 is trivially in P.) Then in
Section 3, we give a simple algorithm (called A1) that ap-
proximates MSP to within a factor of 2 for every ¢t > 2. In
Section 4, we give a modified version of Al (called A2). For
t = 2, A2 approximates MSP to within a factor of 5/3. If a
simple condition on the input is satisfied, A2 approximates
MSP to within a factor of 1.5 for every ¢ > 2. Al and A2
output a placement which is good for a particular ¢ only. In
Section 5, we give a recursive algorithm (called A3) which
outputs a single placement such that besides approximating
MSP with parameter ¢, it also approximates MSP with pa-
rameter t' to within a factor of at most 5 for all ' < ¢t. In
Section 6, some experimental results are given. Firstly, note
that the approximation factors shown in Sections 3, 4 and 5
are worst-case bounds only and we show that the algorithms
work much better in practice. Secondly, we consider thermal
placement and optimization of other objectives at the same
time. It is because when we place gates into a chip, we may
have other concerns besides heat consideration. We show
that the placements by Al and A3 are so flexible that the
flexibility can be used in optimizing other objectives simul-
taneously. We demonstrate the idea by considering thermal
distribution and wiring at the same time. In Section 7, we
conclude by discussing some directions for future work.

2. NP-COMPLETENESS

MSP with t = 1 1s very easy since every placement is optimal.
However, we will show that MSP with every fixed ¢t > 2 is
NP-complete. In order to prove this result, we need the
following definitions.

DECISION VERSION OF MSP

INSTANCE: A positive real bound B, integers ¢,
m, n, and a list of mn non-negative real numbers
Loy &X1yeoyTmn—1-.

QUESTION: Is it possible to synthesize a m X n matrix
M out of o, %1, ..., Tmn—1 such that p, (M) < B?

3-PARTITION

INSTANCE: A positive real bound B, and a multi-set
X of 3g positive real numbers such that Z r=qB
and Vo € X,B/4 < x < B/2.

QUESTION: Can X be partitioned into ¢ multi-sets
Xo,...,Xq—1 such that for 0 <r <¢g—1, Zm L r=
B?

Note that 3-PARTITION is NP-complete [3].

Theorem 1 For every fived t > 2, MSP is NP-complete.

Proof outline: Let ¢ be any fixed integer greater than or
equal to 2. Given an instance of 3-PARTITION, we can
reduce it to an instance of MSP with that particular value
of . The bound B for the MSP is the same as the B for
the 3-PARTITION problem. We set m = t and n = {q.
The mn non-negative real numbers are those in X together
with mn — 3¢ zeros. We can show that the instance of 3-
PARTITION returns “YES” if and only if the instance of
MSP returns “YES”. The details are omitted here. a

zeEX

ex

3. A SIMPLE APPROX. ALGORITHM

In this paper, we assume that the indices of matrices start
at 0. Let S’ (M) be the ¢ x t sub-matrix in S¢(M) at the
intersection of rows ¢,...,1+¢t—1and columns 7,...,7+t—1.

Let Si(M) be the set of all ¢ x ¢ sub-matrices S;’ (M) such
that ¢ = 7 = 0 (mod t).

From now on, we assume for simplicity that m = n = {q for
some integer q. In other words, we are placing t2qA2 numbers
into a tq X tq matrix. Note that in this case S;(M) is a
set of ¢° non-overlapping sub-matrices that covers the whole
matrix M. We can obtain similar results if m # n, or m or
n is not a multiple of t. Without loss of generality, we also
assume that xg > @1 > ... > x,2_,.

The algorithm Al below approximates MSP to within a
factor of 2. The basic idea of the algorithm is to distribute
the numbers evenly among the matrix. We divide the num-
bers into ¢ x ¢t groups according to their magnitudes. We
observe that it is possible to have a placement with the prop-
erty that every ¢ x ¢t sub-matrix contains exactly one number
from each group.

ALGORITHM A1l

1. For 0 < k < t* — 1, let group Gj contains the

numbers Ty 2, ..., Tpo2 2 1-

2. For 0 < k <t*—1,forall i = |k/t] (mod t) and for
all 5 = (k mod t) (mod ¢t), label m; ; (entry (1,)
of matrix M) as L.

3. For 0 < k < t* — 1, place each number in group
G arbitrarily into a distinct position of M labeled
with L.

For example, let t =2, m =n =6, z;, = 35—1for 0 < < 35.
In other words, we are placing the numbers 35, 34, ...,0 into
a 6 x 6 matrix. Then Gy contains 35,...,27, (G contains
26,...,18, G2 contains 17,...,9, and G5 contains 8,...,0.
The labeling is as shown in Figure 2. A possible placement
is in Figure 3. Note that those numbers from group Gy are
evenly distributed in the matrix. This is also true for all
other groups.

Figure 2. Labeling of algorithm Al witht = 2 and n = 6. Note
that there is exactly one of each of Ly, L1, L2 and L3 inside every
2 X 2 sub-matrix.

Let OPT; be the optimal placement for MSP with param-
eter t. Before proving the approximation factor for Al, we
first give two lower bounds on p,(OPTy).

30 |19 | 33| 25|27 | 24

17| 1 |16 | 5

35 (21| 29|18 | 32| 26

141 0 | 13| 2 |12 | 8

31| 20| 28 | 22| 34| 23

1) 7 | 10| 3 9 6

Figure 3. A possible placement by algorithm Al for the num-
bers 35,34,...,0. The entries with label Ly (i.e. numbers from
group G) are shaded.

Lemma 1 For everyt > 2, 0 < k < t* — 1, pu:(OPTy) >
(k —|— l)l‘kq2.

Proof: wo,...,3,,2 are k¢° + 1 numbers at least as large

q
as xy,2. Consider the ¢ sub-matrices in S;(OPT;). By
pigeonhole principle, there must be a sub-matrix containing
at least k + 1 numbers larger than or equal to z,.,2. So

O

[,lt(OPTt) Z (k + 1).’L‘kq2.

n2—1

Lemma 2 For everyt > 2, us(OPT}) > q% Yoo

Proof:
1
Ly

5€5,(0PTy)

w(OPT) > o(S) (1)

n2—1

1
= S " (2)
1=0
Line (1) follows from the fact that p;(OPT;) > o(S) for any
S € S5{(OPTy) and |S:(OPT})| = ¢°. Line (2) follows from

I~

the fact that S;(M) is a set of non-overlapping sub-matrices
that covers the whole matrix M. a

Theorem 2 For every t > 2, pu (A1) < 2. u(OPTy).
Proof:

/,lt(Al) S o —|—CL‘q2 —|— ~~~+l‘(t2_1)q2 (3)
1 q2—1 1 (t2—1)q2—1
< $O+q—22$i+"'+q—2‘ Z zi (4)
i=0 i=(12-2)g?
1 n2—1
< %o+ —= T
< 2. (OPT) (5)

By the way we place the numbers, each ¢ x ¢ sub-matrix
contains exactly one number from each group Gi. Note
that v < w2 for every number x in Gjx. So for any
S € Si(Al),0(S) < mo + Tgz + o+ Ty g Line (3)
immediately follows. Line (4) follows from the fact that
Tpg2 < Tpge_, for 1 < r < ¢° as the numbers are sorted

in decreasing order. Line (5) follows from Lemma 1 with
k =0 and Lemma 2. |

4. A BETTER APPROX. ALGORITHM

In step 3 of algorithm Al, the placement of numbers from
group G, into entries marked with label Ly is done arbitrar-
ily. The algorithm A2 given below makes use of this flexibil-
ity on placement to improve the approximation factor.

ALGORITHM A2

1. For 0 < k < t* — 1, let group Gj contains the

numbers Ty 2, ..., Tpo2 2 1-

2. For 0 < k <t*—1,for all i = |k/t] (mod t) and for
all j = (k mod ¢) (mod ¢), label m;; (entry (1, j) of
matrix M) as L.

3. Place each number of group Gy into a distinct posi-
tion of M labeled with Lg (i.e. into m;; s.t. ¢ and
7 are multiple of t) such that musve > Murtr,or
and Mut,ve > Maur,vi4e for all u, v.

4. For0<r < ¢*—1,1let S, € gt(M) be the sub-
matrix where z, is placed at step 3. For 1 < k <
-1, plé.iCG Trg2442—1—r € Gg into the entry with
label Ly in S;.

One way to do step 3 is to place x, into mys,,¢ where u =
[r/q],v = (r mod g). Figure 4 illustrates this step.

XO Xl7 Xl X16 XZ X15

X26 X35 X25 X34 X24 X33

X3 X14 X4 X13 XS X12

X23 X32 X22 X3l X21 XSO

XG xll X7 XlO X8 X9

X20 X29 X19 X28 X18 X27

Figure 4. A possible implementation for step 3 of algorithm A2
with n = 6 and t = 2. The entries with label Ly are shaded.

The algorithm matches larger numbers from group Go
with smaller numbers from other groups. So it prevents all
the largest numbers of the groups from being placed into
the same ¢ X ¢ sub-matrix. Intuitively, one might think that
it would be better to match larger numbers from half of
the groups with smaller numbers from the other half of the
groups. However, the worst-case bound is better for our al-
gorithm.

Theorem 3 For everyt > 2, if 5,2 = awo, then u, (A2) <
max(1.5,2 — a) - u(OPTy).

Proof outline: By the way we place the numbers in
step 3 and step 4, we can show that o(S;’(A2)) <

J(St“/ﬂt’r]/ﬂt(AZ)) for any ¢,j. In other words, the sum
of every sub-matrix is dominated by the sum of some sub-

matrix in gt(AZ). Hence we can focus on those sub-matrices
in S¢(A2). By a similar (but much more complicated) proof

as in Theorem 2, we can prove that for any S € gt(AZ),
o(S) < max(1.5,2 — a) - u;(OPT}) using the fact that «’s
are sorted in decreasing order, x,2_; = awo, Lemma 1

with & = 0 and k¥ = 1, and Lemma 2.
max(1.5,2 — a) - u(OPTy).

So Ht(Az) <

O

Note that Theorem 3 gives a bound worse than 1.5 only
when a is small (less than 0.5). In this case, the input should
contain a few large numbers and a lot small numbers.

For the case t = 2, we can prove a bound that holds for any
input. But we need to use another lower bound of ut(OPTt).

Lemma 3 For allt > 2 and for all v s.t. 0 <r < n? —1,
wi(OPTy) > zp + @ p2_q_,.

Proof: zg,...,z, are r + 1 numbers larger than or equal to

z,. Consider the ¢° sub-matrices in gt(OPTt). If any two of
these numbers are in the same sub-matrix, then the lemma
is obviously true. Consider the case when they are in r 4+ 1

different sub-matrices in St(OPTt). Since there are at most
r numbers less than x,2_;_,, at least one of these r 4+ 1 sub-
matrices must contain some number larger than or equal to
T,2_;_,. Hence, the result follows. a

Theorem 4 For t =2, uz(A2) < 2 - u2(OPTy).
Proof outline: Asin Theorem 3, we will focus on those sub-
matrix in S2(A2). By asimilar (but much more complicated)

proof as in Theorem 2, we can prove for any S € §2 (A2),
o(S) < % - pu2(OPT3), using the fact that z’s are sorted in
decreasing order, Lemma 1 with £ =1 and k& = 2, Lemma 2

and Lemma 3. So for t = 2, puz(A2) < % - p2(OPTY). O

5. A RECURSIVE APPROX. ALGORITHM

For the thermal placement problem, if the heat transfer is
good, it is reasonable to consider larger regions and hence to
use a larger ¢. Smaller regions will become less important as
heat generated will be dissipated to other parts of the chip
easily. Even if a lot of heat i1s generated in a small region,
if its surrounding region does not generate much heat, the
heat will spread out quickly to a larger region. However, it
does not mean that the heat consideration of smaller regions
is totally unimportant. One may still want to have some
bounds on the amount of heat generated by smaller regions.

In the previous two sections, we present two algorithms
A1l and A2 that give placements which are good for a partic-
ular t. If we consider a parameter t' < t, those placements
generated with parameter ¢ do not give you much guarantee
on the approximation factor. For example, if we run Al with
t = 4, the numbers from Go, G1, G4 and G5 will be placed
next to each other. As the numbers from these 4 groups are
relatively large, if we run Al with ¢ = 4, pz(Al) may be
large.

It can be easily seen that the problem with the previ-
ous two algorithms is that there is no intention to distribute
the numbers from different groups evenly inside a ¢t x ¢ sub-
matrix. If we do the labeling carefully, we should be able to
obtain better bounds for smaller sub-matrices. In this sec-
tion, we give an algorithm A3 which outputs a single place-
ment such that besides approximating MSP with parameter
t to within a factor 2, it also approximates MSP with pa-
rameter ¢’ to within a factor of at most 5 for all ¢’ < t, when
t is a power of 2.

The idea is to do the labeling by Al with ¢ = 2 recur-
sively. For a 2¢q x 2¢ matrix labeled by Al with ¢t = 2, if we
consider the ¢ X ¢ matrix formed by removing all the entries
other than those marked with Lo, and apply Al with ¢t = 2
again to place the ¢° numbers of Gy into it, then we know
that the largest numbers of Gy will not be placed adjacent

to each other in the original matrix. We can continue the
idea recursively until the groups we are considering are small
enough. Then we can apply the same procedure to Gi, G>
and Gs. The algorithm is given below.

ALGORITHM A3

1. Divide the input numbers into 4 groups Go, G1, G2
and G5 and label the matrix by Lo, L1, L2 and L3
as in step 1 and 2 of algorithm Al with ¢ = 2.

2. Recursively place the numbers in GGy into the sub-
matrix formed by entries marked with Lo until the
size of each group is n?/t*. In that case, we do
the placement arbitrarily instead of doing it recur-
sively.

3. Apply the same procedure to G, G2 and Gs.

Note that we assume ¢ is a power of 2 in algorithm A3. If ¢
is not a power of 2, we can use the smallest power of 2 bigger
than ¢ as the parameter for A3 instead.

(b)

Figure 5. The labeling of A3 witht =4 and n = 8. (a) is the
labels for the first level of recursion. Those entries labeled with
Lo at this step are shaded. (b) is the labels for the second level

of recursive. The labels for the first level are written at lower left
COrners.

An example of the labeling is shown in Figure 5. Basically,
as in Al with ¢ = 4, we are dividing the input numbers into
16 groups (4 groups in the first level of recursion and then
16 groups in the second level) such that there is exactly one
number from each group in every 4 x 4 sub-matrix. So the
sum of every 4 x 4 sub-matrix will not differ by too much.
However, because of the way we do the labeling, numbers
from different groups are evenly distributed inside every 4 x4
sub-matrix. So we can obtain some bounds for 3 x3 and 2 x 2
sub-matrices too.

Theorem 5 Supposet is a power of 2. For any t' such that
2 < t' < t, let p be the integer such that 2P~ < ¢ < 2P,
Then py(A3) < (1 — (27 /n)? + (22/t')?) - p (OPTy).

Proof outline: Let r be the integer such that ¢ = 27.
Note that for any S € Sy (A3), 0(S) < wo + Ty2r—2p2 +
Tp.p2r—2pg2 + + + T(g2p _1)p2r—2p42. Using the fact that z’s
are sorted in decreasing order, Lemma 1 with & = 0 and
Lemma 2, we can prove that ¢(S) < (1—(27/n)*+(27/t')?)-
ty(OPTyr) and hence the Theorem follows. O

Note that if ¢’ is a power of 2, the approximation factor is
at most 2. Otherwise, the approximation factor is at most

(14 (@2r/2r71)%) = 5.
6. EXPERIMENTAL RESULTS

The approximation factor bounds for the algorithms shown
in the previous three sections are all worst-case bounds only.
We show here that these algorithms perform much better in
practice.

As we do not have any actual thermal information for cir-
cuits, we generate thermal information uniformly at random.
10 sets of data of size 120 x 120 are generated. In Table 1,
the average approximation factors over the 10 data are shown
when algorithms A1 and A2 with various values of ¢ are used
to place them into a 120 x 120 matrix. For algorithm A1, the
placement of numbers inside a group is done randomly. We
also include the results of random placements for compari-
son. If the placement of gates is independent of the amount
of heat generated by the gates, then the resulting placement
should be similar to a random placement in terms of heat
distribution.

Avg. Approx. Factor
t Al A2 Random
2 1.218 1.125 1.899
3 1.079 1.085 1.714
4 1.033 1.054 1.646
5 1.018 1.038 1.480
Average | 1.087 1.076 1.685

Table 1. Average Approximation factors for Al and A2.

As shown in the table, the approximation factors of our
algorithms are very close to optimal in practice. They also
perform much better than random placements. Note that as
we do not know the optimal value p,(OPT;), we only use
the maximum of the lower bounds in Lemma 1, Lemma 2,
and Lemma 3 as an approximation of it. The approximation
factors should be even better if optimal values are used.

In Table 2, the average approximation factors over the
same sets of data for algorithm A3 are shown. We use t = 8
here and the approximation factors for ' < 8 are also shown.
The worst-case bounds proved in Theorem 5 and the results
of random placements are included for comparison.

As shown in Table 2, the algorithm gives pretty good ap-
proximation factors simultaneously for all ¢'. It performs

Worst-case Bound Avg. Approx. Factor
t for A3 A3 with t =8 Random
2 2.000 1.247 1.899
3 2.777 1.370 1.714
4 1.999 1.053 1.646
5 3.556 1.222 1.480
6 2.773 1.084 1.388
7 2.302 1.263 1.454
8 1.996 1.006 1.287
Average 2.486 1.178 1.553

Table 2. The worst-case bounds (1 — (2P/n)? + (2P/t')? where
p = [log, t']) and the average values of the approximation factors
of algorithm A3 with t = 8 for different t'.

much better in practice than the upper bounds suggest. It
also performs much better than random placements. Again,
we can only use the lower bounds in Lemma 1, Lemma 2,
and Lemma 3 to approximate the optimal values.

Figure 6 and Figure 7 show the heat distribution of a ran-
dom placement and a placement by Al with ¢ = 4 respec-
tively. The brightness at each point is proportional to the
total amount of heat generated by a surrounding region of
size 4 X 4. As we can see, there are many hot spots in the
random placement. On the contrary, the heat is very evenly
distributed in the placement by Al.

Figure 6. Heat distribution of a random placement. There are
many hot spots (white spots) in this placement.

When we place gates into a chip, we usually have to op-
timize other objectives at the same time. For algorithms
Al and A3, there is large flexibility to do the placement be-
cause the algorithms only require a number to be place in
any of those entries with a particular label. Moreover the
entries with that particular label are plenty and are evenly
distributed on the matrix.

We observe that such flexibility can be used to simultane-
ously optimize other objectives. We demonstrate the idea by
considering heat distribution and wiring at the same time.
A set of MCNC benchmark circuits was used. Since ther-
mal data of these circuits were not available, we generated
a number uniformly at random for each gate representing
the amount of heat dissipated by the gate. We first obtain
a thermally good placement by our thermal placement al-
gorithm Al with ¢ = 2. Then we try to improve the total
wiring length by simulated annealing. However, we only al-

Circuit Wiring Heat

name size n | Traditional Our Alg. inc% | Traditional Our Alg. dec%
s5378 2978 55 23912 23912 0.0 1.878 1.224 34.8
s9234 5844 77 58209 58546 0.6 1.882 1.226 34.9
s13207 | 8727 94 94698 95547 0.9 1.934 1.224 36.7
s15850 | 10397 | 102 128369 130003 1.3 1.889 1.216 35.6
s38584 | 20871 | 145 375121 375577 0.1 1.949 1.222 37.3
s38417 | 24061 | 156 444150 447792 0.8 1.893 1.244 34.3

Average 0.6 35.6

Table 3. Comparison of traditional placement based on the wiring objective only and our approach of placement which considers

both heat distribution and wiring.

Figure 7. Heat distribution of a placement by Al. There is
no hot spot (white spot) in this placement. The heat is evenly
distributed.

low the exchange of two entries such that the differences in
row indices and in column indices are both multiples of ¢. So
as far as heat is concerned, the placement after the simulated
annealing is as good as the one before. As for comparison,
we also consider traditional placement based on the wiring
objective only. That is, in our experiment, we apply sim-
ulated annealing to a random initial placement, using total
wire length as the objective, and without imposing any re-
strictions on the gate locations as was done in the other case.
It corresponds to the case when heat is not taken into con-
sideration. Table 3 are the results of the experiment.

As expected, our algorithm is not as good as usual simu-
lated annealing in terms of total wire length. However, the
increase is very insignificant. On the other hand, our algo-
rithm performs much better in distributing the heat.

7. CONCLUDING REMARKS

We have introduced a new combinatorial problem MSP (Ma-
trix Synthesis Problem) to model the thermal placement
problem. We show that MSP is NP-complete and we give
several provably good approximation algorithms for it. The
algorithms are fast, flexibility and good both theoretically
and practically in providing an approximate solution.

A direction of future work is to design algorithms with
provably better approximation factors for MSP. As we
pointed out at Section 5, one may want to have bounds on
several values of ¢ simultaneously. The worst-case bounds
given by A3 sometimes can be as large as 5. It is good
to have algorithms with better worst-case bounds. We can

also generalize MSP by considering a weighted average of the
approximation factors for different values of ¢. This model
gives more guarantee than MSP and it may be easier to work
with than the model of providing several bounds simultane-
ously. However, we have no idea how the weights should
look like. It is worthwhile to investigate what the weights
should be and to design approximation algorithms according
to the weight distribution. Another direction is to obtain a
simple model which gives the temperature for each point on
the chip. In fact, the temperature distribution for a given
placement can be found by numerically solving differential
equations but such calculations are too expensive to be used
by a placement algorithm.

ACKNOWLEDGMENT
The authors thank Dr. K.Y. Chao of Intel Corporation for

his helpful comments.

REFERENCES

[1] K. Y. Chao and D. F. Wong. Low power considerations in
floorplan design. In Proceedings of the 1994 International
Workshop on Low Power Design, pages 45-50, 1994.

[2] K. Y. Chao and D. F. Wong. Thermal placement for
high performance multi-chip modules. In Proceedings of
the IFEFE International Conference on Computer Design
(ICCD), Oct. 1995.

[3] M. R. Garey and D. S. Johnson. Computers and In-
tractabelity: A Guide to the Theory of NP-Completeness.
Freeman, NY, 1979.

[4] M. D. Osterman and M. Pecht. Component placement for
reliability on conductively cooled printed wiring boards.
ASME J. of Packaging, 111(3):149-156, 1989.

[5] M. D. Osterman and M. Pecht. Placement for reliabil-
ity and routability of convectively cooled PWBs. [EFE
Transactions on CAD, 9(7):734-744, 1990.

[6] M. Pedram. Power minimization in IC design: Principles
and applications. ACM Transactions on Design Automa-
tion of Electronic Systems, 1(1):3-56, 1996.

[7] B. T. Preas and M. J. Lorenzetti. Physical Design Au-
tomation of VLSI Systems. Benjamin Cummings, Menlo
Park, CA, 1988.

[8] R. E. Simons. Microelectronics cooling and SemiTherm:
A look back. In Proceedings of the 10th Semiconduc-

tor Thermal and Temperature Measurement Symposium,
pages 1-16, 1994.

