Dilation-5 Embedding of 3-Dimensional Grids into Hypercubes

M.Y. Chan, F. Chin, C.N. Chu and W.K. Mak
Department of Computer Science
The University of Hong Kong
Pokfulam Road, Hong Kong

Abstract

We present an algorithm to map the nodes of a 3dimensional grid to the nodes of its optimal hypercube on a one-to-one basis with dilation at most 5 .

1 Introduction

A binary hypercube of dimension n, is an undirected graph of 2^{n} nodes labeled 0 to $2^{n}-1$ in binary where two nodes are connected if and only if their labels differ in exactly one bit position. Since a hypercube has a regular structure with a rich interconnection, it is a popular multiprocessor computer architecture. An embedding for a 3-D grid into a hypercube can be viewed as a high level description of an efficient method to simulate an algorithm designed for a parallel computer with a 3-D grid structure on a parallel computer with a hypercube structure. Here we are interested in the problem of mapping the nodes of any 3-D grid into the nodes of its optimal hypercube (the smallest hypercube with at least as many nodes as the grid) on a one-to-one basis, so that dilation (the worst case distance between grid-neighbours in the hypercube) is bounded by a small constant.

It is known that every 2-D grid can be embedded into its optimal hypercube with at most dilation 2 [C1, C2], [HLV]. This result is optimal as it has been proven that over 38 percent of all 2-D grids need at least dilation 2 [BS]. However, not much is known about the optimal dilation for embedding 3-D grids into optimal hypercubes. A non-trivial extension of the technique in [$\mathrm{C} 1, \mathrm{C} 2$] for embedding 3 -D grids into optimal hypercubes with at most dilation 7 was given by Chan in [C3]. A dilation-6 embedding scheme was derived later in [LH]. In this paper, we introduce a simple dilation- 5 embedding strategy for embedding 3-D grids into optimal hypercubes.

2 General Outline

Consider a 3-D grid G of size $\alpha \times \beta \times \gamma$. Our objective is to label each node of G with a unique $\left\lceil\log _{2} \alpha \beta \gamma\right\rceil$-bit binary number, which effectively names the node in the optimal $\left\lceil\log _{2} \alpha \beta \gamma\right\rceil$-cube to which it is mapped. G can be seen as comprising of γ layers of 2-D grids each of size $\alpha \times \beta$. Let $l=2^{\left\lfloor\log _{2} \alpha \beta\right\rfloor}$. To aid the assignment of binary labels, we will partition G's nodes into l groups, called links, evenly in the sense that when counting from layer 0 to layer $k(0 \leq k$ $\leq \gamma-1$), the number of nodes belonging to any particular link is either $[(k+1) \alpha \beta / l\rfloor$ or $\lceil(k+1) \alpha \beta / \eta\rceil$.

Partitioning G's nodes into l links is equivalent to determining a unique pair of numbers for each node of G, namely, a link-number and a bead-number. A node's link-number indicates the link to which a node belongs, while its bead-number tells its position in that link. After the partitioning, we will use a node's linknumber to determine the first $\log _{2} l$ bits of its binary label, which we will call the link-label. And we will use a node's bead-number to determine the remaining bits of its binary label, which we will call the bead-label.

3 Preliminaries

In [HLV], a general embedding strategy for embedding 2-D grids into 2-D grids (of different sizes) was introduced. In particular, it can be used to embed an $\alpha \times \beta$ guest grid into an $\alpha^{\prime} \times \beta^{\prime}$ host grid where $\alpha^{\prime}={ }_{2}^{\left\lfloor\log _{2} \alpha\right\rfloor}$ and $\beta^{\prime}=\left\lceil\alpha \beta / \alpha^{\prime}\right\rceil$. (Note that in [HLV], the embedding strategy was described for embedding a $h \times w$ guest grid into a $h^{\prime} \times w^{\prime}$ host grid where $w^{\prime} \leq w$ and $h^{\prime}=\left\lceil h w / w^{\prime}\right\rceil$, here we swapped the roles of row and column for later convenience.)

As the embedding is one-one, $\alpha^{\prime} \beta^{\prime}$ has to be greater than $\alpha \beta$, and some nodes in the $\alpha^{\prime} \times \beta^{\prime}$ host grid do not correspond to any node in the $\alpha \times \beta$ guest grid. A nice property of this embedding is that any unmapped node is only found in the last column of the $\alpha^{\prime} \times \beta^{\prime}$
host grid. So we can view the above embedding as one that embeds an $\alpha \times \beta$ grid into a jagged grid of α^{\prime} rows where each row consists of either β^{\prime} or $\beta^{\prime}-1$ nodes, and the total number of nodes of the jagged grid is exactly $\alpha \beta$. Figure 1 shows an example of such an embedding. It is proven in [HLV] that this method yields a dilation-2 embedding for any $\alpha \times \beta$ guest grid. A careful study of the proof will reveal that the method actually ensures that any two neighbouring nodes in the $\alpha \times \beta$ grid can only be mapped to one the following 5 sets of relative positions in the α^{\prime}-row jagged grid: $\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}, \mathrm{y}+1]\},\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}, \mathrm{y}+2]\},\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}+1, \mathrm{y}]\}$, $\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}+1, \mathrm{y}-1]\},\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}+1, \mathrm{y}+1]\}$ where $[x, y]$ denotes the position in row x, column y of the jagged grid. We will utilize this 2-D grid embedding method as the first step of our embedding stratedgy, and we will refer to it as the trio's method.

The process of partitioning G into l links depends on a length-l vector of 1 's and 2's, $v(\alpha, \beta)$ [C2].

Definition 1 Define

$$
\begin{aligned}
v(\alpha, \beta)= & {\left[v_{0}, v_{1}, v_{2}, \ldots, v_{l-1}\right] } \\
& =\left[\begin{array}{l}
\lceil\alpha \beta / l\rceil \\
\lfloor\alpha \beta / l\rfloor \\
\lfloor 2 \alpha \beta / l\rfloor-\lfloor\alpha \beta / l\rfloor \\
\lfloor 3 \alpha \beta / l\rfloor-\lfloor 2 \alpha \beta / l\rfloor \\
\vdots \\
\lfloor(l-1) \alpha \beta / l\rfloor-\lfloor(l-2) \alpha \beta / l\rfloor
\end{array}\right]
\end{aligned}
$$

where $l=2^{\left\lfloor\log _{2} \alpha \beta\right\rfloor}$
Basically, v is defined so that the 2's are evenly distributed among the l's when there are more 1's than 2's and vice versa when there are more 2's than 1's. The vector v has a Cyclic Sum Property which is stated below.

Definition 2 For $0 \leq s \leq l-1$ and $k \geq 0$, define

$$
C Y C L I C-S U M(s, k)=\sum_{i=s}^{s+k-1} v_{i \bmod l}[C 2]
$$

Fact 1 (Cyclic Sum Property)
$\lfloor k \alpha \beta / l\rfloor \leq C Y C L I C-S U M(s, k) \leq\lceil k \alpha \beta / \eta\rceil$ for $0 \leq s \leq l-1, k \geq 0$

To determine the final binary label given to each node the binary reflected Gray code sequence is used.

Definition 3 For $t \geq 0$ and $0 \leq p \leq 2^{t}-1$, define

$$
\begin{aligned}
G R A Y(t, p)= & (p+1) \text { th element of the } t-\text { bit } \\
& \text { binary reflected Gray code sequence }
\end{aligned}
$$

For example, $\operatorname{GRAY}(3,5) \equiv 111$ since 111 is the 6 th element of $(000,001,011,010,110,111,101,100)$.

Fact 2 (Gray Code Property) In the t-bit binary reflected Gray code sequence, for any p such that $0 \leq p$ $\leq 2^{t}-1$ and for any $i \geq 0$, the number of differing bits of $G R A Y(t, p)$ and $\bar{G} R A Y\left(t,(p \pm i) \bmod 2^{t}\right)$ is at most i.

4 Dilation-5 Embedding Strategy

The following steps are illustrated by Figures 1 to 4 using a $5 \times 5 \times 5$ grid as an example. Let $l=2^{\left\lfloor\log _{2} \alpha \beta\right\rfloor}, \tilde{\alpha}=2^{\left\lfloor\log _{2} \alpha\right\rfloor}$ and $\tilde{\beta}=l / \tilde{\alpha}$.

1. Transform to γ layers of jagged grids: Using the trio's algorithm, transform all γ layers of $\alpha \times \beta 2$-D grids into γ layers of identical 2-D jagged grids of $\tilde{\alpha}$ rows. (See Figure 1)
2. Partition each jagged layer into cells:

Imagine there is a super-chain spanning all the nodes of a layer for each of the γ jagged layers. Divide each super-chain, hence jagged layer, into l cells according to vector $v(\alpha, \beta)$ and label the cells from 0 to $l-1$. Therefore the number of nodes in cell i should be equal to $v_{i}(0 \leq i \leq l-1)$. (See Figure 2)
3. Determine the link-number of each node:

For any node \mathcal{N}, if \mathcal{N} is in cell $c(0 \leq c \leq l-1)$ of layer k ($0 \leq k \leq \gamma-1$), its link-number is

$$
\operatorname{LINK}(\mathcal{N})=(c-k) \bmod l
$$

(See Figure 3)
4. Determine the bead-number of each node:

For any node \mathcal{N}, if \mathcal{N} is in cell $c(0 \leq c \leq l-1)$ of layer k ($0 \leq k \leq \gamma-1$), its bead-number is

$$
\begin{aligned}
\operatorname{BEAD}(\mathcal{N})= & C Y C L I C-S U M(\operatorname{LIN} K(\mathcal{N}), k) \\
& +\delta(\mathcal{N})
\end{aligned}
$$

where δ is defined as follows: let $t=\lfloor c /(\tilde{\beta}+2)\rfloor$ if t is even (odd),

$$
\delta(\mathcal{N})= \begin{cases}1 & \begin{array}{l}
\text { if } \mathcal{N} \text { has an immediately } \\
\text { preceding (succeeding) node } \mathcal{M} \\
\text { in its super-chain such that } \\
\operatorname{LINK}(\mathcal{M})=\operatorname{LINK}(\mathcal{N})
\end{array} \\
0 & \text { otherwise }\end{cases}
$$

(See Figures 3 and 4)
5. Determine the link-label of a node:

For any node \mathcal{N}, define
$L K 1(\mathcal{N})=\lfloor\operatorname{LINK}(\mathcal{N}) / \tilde{\beta} \mid$ and $L K 2(\mathcal{N})=$ $\operatorname{LIN} K(\mathcal{N}) \bmod \tilde{\beta}$, the link-label of \mathcal{N} is
$G R A Y\left(\log _{2} \tilde{\alpha}, L K 1(\mathcal{N})\right) G R A Y\left(\log _{2} \tilde{\beta}, L K 2(\mathcal{N})\right)$
6. Determine the bead-label of a node: For any node \mathcal{N}, its bead-label is

$$
G R A Y\left(\left\lceil\log _{2} \alpha \beta \gamma\right\rceil-\log _{2} l, B E A D(\mathcal{N})\right)
$$

7. Concatenate the link-label and bead-label to get the complete binary label for every node.

5 Dilation Analysis

We will call any neighbouring nodes in the same layer of a 3-D grid G horizontal neighbours and any neighbouring nodes at the same position of 2 adjacent layers of G vertical neighbours.

Let us consider horizontal neighbours first.
For any horizontal neighbours \mathcal{N}_{1} and \mathcal{N}_{2} of the grid G, they must be mapped to the same jagged grid. Moreover, the trio's method will map them to one of the following 5 sets of relative positions: $\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}$, $\mathrm{y}+1]\},\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}, \mathrm{y}+2]\},\{[\mathrm{x}, \mathrm{y}],[\mathrm{x}+1, \mathrm{y}-1]\},\{[\mathrm{x}, \mathrm{y}]$, $[x+1, y]\},\{[x, y],[x+1, y+1]\}$.

WLOG, for Lemma 1 to Lemma 5 assume that \mathcal{N}_{1} is mapped to position $[x, y]$ of a jagged layer, and \mathcal{N}_{1} is in cell p, \mathcal{N}_{2} is in cell $q(0 \leq p, q \leq l-1)$.

Lemma 1 If \mathcal{N}_{2} is mapped to $[x, y+1]$ or $[x, y+2]$, then $p \leq q \leq p+2$.

Proof outline: Note that each cell contains 1 or 2 nodes. If \mathcal{N}_{2} is mapped to $[x, y+1]$, then $p \leq q$ $\leq p+1$. If \mathcal{N}_{2} mapped to $[x, y+2]$, then $p+1 \leq q$ $\leq p+2$.

Lemma 2 If \mathcal{N}_{2} is mapped to $[x+1, y-1]_{2}[x+1, y]$ or $[x+1, y+1]$, then $p+\tilde{\beta}-2 \leq q \leq p+\tilde{\beta}+2$.

Proof outline: We can prove this lemma by counting the number of nodes from \mathcal{N}_{1} to \mathcal{N}_{2} in their superchain and using the Cyclic Sum Property of the vector v used in constructing the cells.

Lemma 3 The number of differing bits of the linklabels of \mathcal{N}_{1} and \mathcal{N}_{2} is at most 3 if $p \leq q \leq p+2$ or $p+\tilde{\beta}-2 \leq q \leq p+\tilde{\beta}+1$, and is at most 4 if $q=$ $p+\tilde{\beta}+2$.

Proof outline: Let $q=p+i(i=0,1,2, \tilde{\beta}-2, \tilde{\beta}-$ $1, \tilde{\beta}, \tilde{\beta}+1$ or $\tilde{\beta}+2$). It can be proved that

$$
\begin{aligned}
L K 1\left(\mathcal{N}_{2}\right)= & \left(L K 1\left(\mathcal{N}_{1}\right)+r\right) \bmod \tilde{\alpha} \\
& \text { where } r=\lfloor i / \tilde{\beta}] \text { or }\lceil i / \tilde{\beta}\rceil \\
L K 2\left(\mathcal{N}_{2}\right)= & \left(L K 2\left(\mathcal{N}_{1}\right)+i \bmod \tilde{\beta}\right) \bmod \tilde{\beta} \\
\text { and } & \left(L K 2\left(\mathcal{N}_{1}\right)+(\tilde{\beta}-i) \bmod \tilde{\beta}\right) \bmod \tilde{\beta}
\end{aligned}
$$

Substituting i and using the Gray Code Property, the results can be proved.

Lemma 4 The number of differing bits of the beadlabels of \mathcal{N}_{1} and \mathcal{N}_{2} is at most 2.

Proof outline: By the definition of bead-number and the Cyclic Sum Property, $\left|B E A D\left(\mathcal{N}_{1}\right)-\operatorname{BEAD}\left(\mathcal{N}_{2}\right)\right| \leq 2$. Hence the result by the Gray Code Property.
Lemma 5 If $q=p+\tilde{\beta}+2$, the number of differing bits of the bead-labels of \mathcal{N}_{1} and \mathcal{N}_{2} is at most 1 .

Proof outline: Note that one of $\lfloor p /(\tilde{\beta}+2)\rfloor$ and $\lfloor q /(\tilde{\beta}+2)]$ must be odd and the other must be even. (This is the reason why the factor $\tilde{\beta}+2$ is used in defining the function δ.) Then it can be proved that $\left|B E A D\left(\mathcal{N}_{1}\right)-\operatorname{BEAD}\left(\mathcal{N}_{2}\right)\right| \leq 1$ using the Cyclic Sum Property. Hence the result by the Gray Code Property.

Now, let us consider vertical neighbours.
For the following 2 lemmas, let \mathcal{M} and \mathcal{N} be any vertical neighbours such that \mathcal{M} is above \mathcal{N}. Since all layers are transformed into jagged grids in the same way, \mathcal{M} and \mathcal{N} will be mapped to the same position of 2 adjacent jagged grids.

Lemma 6 The number of differing bits of the linklabels of \mathcal{M} and \mathcal{N} is at most 2.

Proof outline: With some arithmetic manipulation, we can show that $L K 1(\mathcal{M})=L K 1(\mathcal{N}) \bmod \tilde{\alpha}$ or $(L K 1(\mathcal{N})+1) \bmod \tilde{\alpha}$ and $L K 2(\mathcal{M})=(L K 2(\mathcal{N})+$ 1) $\bmod \beta$. Thus the number of differing bits in both components of the link-labels of \mathcal{M} and \mathcal{N} are at most 1.

Lemma 7 The number of differing bits of the beadlabels of \mathcal{M} and \mathcal{N} is at most 2.

Proof outline: Since \mathcal{M} and \mathcal{N} are mapped to the same position of 2 jagged grids, $\delta(\mathcal{M})=\delta(\mathcal{N})$. So
$B E A D(\mathcal{N})-B E A D(\mathcal{M})=1$ or 2 . Hence the result by the Gray Code Property.

The number of differing bits of the binary labels is at most 5 for any horizontal neighbours in G by Lemmas 3 to 5 , and is at most 4 for any vertical neightbours by Lemmas 6 and 7 . So the strategy described gives a dilation- 5 embedding for any 3-D grid G.

References

[BS] J.E. Brandenburg and D.S. Scott, Embeddings of Communication Trees and Grids into Hypercubes, Intel Scientific Computers Report \#280182-001, Intel Scientific Computers, CA, 1985.
[C1] M.Y. Chan, Dilation-2 Embedding of Grids into Hypercubes, International Conference on Parallel Processing, Vol. 3, pp.295-298, 1988.
[C2] M.Y. Chan, Embedding of Grids into Optimal hypercubes, SIAM J. Comput., Vol. 20, No. 5, pp.833864, October 1991.
[C3] M.Y. Chan, Embedding of 3-Dimensional Grids into Optimal Hypercubes, Proceedings of the Fourth Conference on Hypercubes, Concurrent Computers, and Applications, pp.297-299, March 1989.
[HLV] S.H. Huang, H.F. Liu and R.M. Verma, A New Combinatorial Approach to Optimal Embeddings of Rectangles, Technical Report UH-CS-92-24. Computer Science Department, University of Houston, November 1992.
[LH] H.F. Liu and S.H. Huang, Dilation-6 Embedding of 3-Dimensional Grids into Hypercubes, in Proc. International Conference on Parallel Processing, Vol.3, pp.250-254, 1991.

Figure 1: Transform a rectangular grid into a jagged grid by the trio's method

Figure 2: Partition of a jagged grid into l cells. Note that the dotted line represents the super-chain and each small circle or oval represents a cell. $v(5,5)=$ [2,1,2,1,2,1,2,1,2,2,1,2,1,2,1,2]

Figure 3: An example of link-number and bead-number assignments. Nodes of link 3 are shown with their beadnumbers

Figure 4: Values of δ function for the nodes of one layer

