EE330
Integrated Electronics

Spring 2014

Ayman Fayed, Assistant Professor
Director, Power Management Research Lab
Electrical & Computer Engineering, Iowa State University
Devices in Semiconductor Processes

Resistors, Diodes, Capacitors, MOSFETs, BJTs
Basic Devices

- Resistor
- Diode
- Capacitor
- MOSFET
- BJT
The MOSFET is a 4-terminal device. We will start by considering the 4th terminal (the bulk) always connected to the source to develop a model, then the impact of the 4th terminal (the bulk) will be appended to the model later.

Let's start with the n-channel MOSFET.
N-Channel MOSFET
• Depletion region is always created whenever there is an interface between an n-type and a p-type material.
Apply a very small V_{GS} (assume V_{DS} very small and $V_{BS} = 0$) → depletion region continues to develop underneath the gate, but the device is off → no current flow from drain to source → This region of operation is called the “cutoff” region.

$I_D = 0$
$I_G = 0$
$I_B = 0$
As you increase V_{GS} (assume V_{DS} very small and $V_{BS} = 0$) → depletion region underneath the gate continues to grow but the device continues to be off → Still in the “cutoff” region.
As you further increase V_{GS} (assume V_{DS} very small and $V_{BS}=0$) → the area underneath the gate starts to be inverted → It becomes an n-type layer

The value of V_{GS} at which inversion takes place is called the threshold voltage (V_t)

Current flows between the drain and the source and the device behaves like a thin film resistor → This region of operation is called the “triode” or “linear” or “ohmic” region

V_{DS} very small and $V_{BS}=0$

$\begin{align*}
I_D &= V_{DS} \\
I_G &= 0 \\
I_B &= 0
\end{align*}$
N-Channel MOSFET: Triode Region

- With V_{DS} very small \rightarrow The device behaves like a resistor between the drain and the source.
- The resistance will strongly depend on V_{GS} and the transistor size.
- Larger $V_{GS} \rightarrow$ deeper inversion layer \rightarrow less channel resistance.
- Wider transistor \rightarrow wider channel \rightarrow less channel resistance.
- Longer transistor \rightarrow longer channel \rightarrow more channel resistance.

For V_{DS} small

- $I_D = \mu C_{OX} \frac{W}{L} (V_{GS} - V_T) V_{DS}$
- $I_G = I_B = 0$

$$R_{CH} = \frac{L}{W} \mu C_{OX} \frac{1}{(V_{GS} - V_T)}$$
N-Channel MOSFET: Triode Region

- Since the channel resistance is controlled by V_{GS}, it is termed a Voltage Controlled Resistance (VCR)

For V_{DS} small

$$R_{CH} = \frac{L}{W \mu C_{OX}} \left(\frac{1}{V_{GS} - V_T} \right)$$
N-Channel MOSFET: Triode Region

- What happens when we now start increasing V_{DS}?
- The channel starts to become thinner towards the drain side \Rightarrow So channel resistance becomes different \Rightarrow Nonlinear behavior \Rightarrow The drain current starts to become nonlinear with respect to V_{DS}
- Yet, we continue to call this region of operation “triode” or “linear” or “ohmic”
We now must take into account the nonlinearity in the channel resistance and drain current.

For small V_{DS}:

$$I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T \right) V_{DS}$$

$$R_{CH} = \frac{L}{W} \frac{1}{\mu C_{OX} \left(V_{GS} - V_T \right)}$$

$I_G = I_B = 0$

For V_{DS} larger:

$$I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS}$$

$I_G = I_B = 0$
If we further increase V_{GS} the inversion layer disappears at the drain side.

The critical values at which this happens $\rightarrow V_{DS} = V_{GS} - V_T$

Increasing V_{DS} beyond that critical value no longer changes the channel \rightarrow The drain current stops increasing with V_{DS}.

This region of operation is called the “saturation” region.

![Diagram of N-Channel MOSFET in saturation region](image)

Increase V_{DS} even more

$V_{BS} = 0$

$I_D = ?$

$I_G = 0$

$I_B = 0$
N-Channel MOSFET: Saturation Region

- The drain current gets stuck at its value when \(V_{DS} = V_{GS} - V_T \) regardless of what the actual \(V_{DS} \) is (as long as it is larger than the critical value of \(V_{GS} - V_T \))

For \(V_{DS} > V_{GS} - V_T \)

\[I_G = I_B = 0 \]

\[V_{BS} = 0 \]

\[I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \] in triode region

Since the voltage across the channel gets stuck at \(V_{GS} - V_T \), then:

\[I_D = \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{GS} - V_T}{2} \right) (V_{GS} - V_T) \]

or equivalently → \[I_D = \frac{\mu C_{OX} W}{2L} (V_{GS} - V_T)^2 \]
N-Channel MOSFET: Saturation Region

- With $V_{DS} > (V_{GS} - V_T)$ → The device behaves like a current source between the drain and the source.
- The value of the current will strongly depend on V_{GS} and the transistor size.
- Larger V_{GS} → deeper inversion layer → larger current.
- Wider transistor → wider channel → larger current.
- Longer transistor → longer channel → less current.

\[I_D = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_T)^2 \]

\[I_D = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_T)^2 \]
Since the current is controlled by V_{GS}, it is termed a Voltage Controlled Current Source (VCCS).

For $V_{DS} > V_{GS} - V_T$

$$I_D = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_T)^2$$
N-Channel MOSFET: Model Summary

- This is the third model we introduced for the MOSFET →
 It is termed the Ideal Square-Law model of the transistor

\[
I_D = \begin{cases}
0 & \text{if } V_{GS} \leq V_T \\
\mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} & \text{if } V_{GS} \geq V_T, \ V_{DS} < V_{GS} - V_T \\
\mu C_{OX} \frac{W}{2L} \left(V_{GS} - V_T \right)^2 & \text{if } V_{GS} \geq V_T, \ V_{DS} \geq V_{GS} - V_T
\end{cases}
\]

- Deep triode is a special case of the triode operation when \(V_{DS} \ll V_{GS} - V_T \)
- In this case the transistor is modeled as a resistor

\[
I_D \approx \mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} \rightarrow R_{CH} = \frac{L}{W \mu C_{OX} \left(V_{GS} - V_T \right)}
\]
N-Channel MOSFET: Model Summary

What does the above model of the transistor mean exactly?

- The transistor behaves like an open circuit between the drain and the source in the cutoff region.
- The transistor behaves like a nonlinear (depends on V_{DS}) VCR between the drain and the source in the triode region. In deep triode, the resistance can be assumed linear (independent of V_{DS}).
- The transistor behaves like an ideal VCCS between the drain and the source in the saturation region (independent of V_{DS}).
- The value of the resistance in the triode region, and the value of the current source in the saturation region are determined by V_{GS} and transistor size.

\[
I_D = \begin{cases}
0 & V_{GS} \leq V_T \\
\mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} \geq V_T, V_{DS} < V_{GS} - V_T \\
\mu C_{OX} \frac{W}{2L} (V_{GS} - V_T)^2 & V_{GS} \geq V_T, V_{DS} \geq V_{GS} - V_T \\
I_G = I_B = 0 &
\end{cases}
\]
N-Channel MOSFET: Model Summary

This is a nonlinear model characterized by the functions f_1, f_2, and f_3 where we have assumed that the port voltages V_{GS} and V_{DS} are the independent variables and the terminal currents are the dependent variables.

\[
\begin{align*}
I_D &= \begin{cases}
0 & V_{GS} \leq V_T \\
\mu C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} & V_{GS} \geq V_T, \ V_{DS} < V_{GS} - V_T \\
\mu C_{OX} \frac{W}{2L} (V_{GS} - V_T)^2 & V_{GS} \geq V_T, \ V_{DS} \geq V_{GS} - V_T
\end{cases} \\
I_G &= I_B = 0
\end{align*}
\]

where

\[
I_D = f_1 \left(V_{GS}, V_{DS} \right) \\
I_G = f_2 \left(V_{GS}, V_{DS} \right) \\
I_B = f_3 \left(V_{GS}, V_{DS} \right)
\]
The operation the n-channel MOSFET can be described graphically in all regions.

At the border between triode and saturation

\[V_{DS} = V_{GS} - V_T \rightarrow I_D = \mu C_{ox} \frac{W}{2L} V_{DS}^2 \]

\[
I_D = \begin{cases}
0 & \text{for } V_{GS} \leq V_T \\
\mu C_{ox} \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{DS}}{2} \right) V_{DS} & \text{for } V_{GS} \geq V_T, V_{DS} < V_{GS} - V_T \\
\mu C_{ox} \frac{W}{2L} \left(V_{GS} - V_T \right)^2 & \text{for } V_{GS} \geq V_T, V_{DS} \geq V_{GS} - V_T \\
I_G = I_B = 0 &
\end{cases}
\]