
User Manual
FPC AS

A MATLAB Solver for ℓ1-Regularized Least Squares Problems

Zaiwen Wen

Department of Industrial Engineering and Operations Research, Columbia University

Wotao Yin

Department of Computational and Applied Mathematics, Rice University

Version 1.0, September, 2008

1 Summary and History

FPC AS stands for fixed-point continuation and active set. It solves the ℓ1-regularized minimization prob-
lem

(1.1) min
x∈Rn

ψµ(x) := µ‖x‖1 +
1

2
‖Ax− b‖2M ,

where x ∈ R
n, A ∈ R

m×n, M ∈ R
m×m, and b ∈ R

m, and µ > 0 is the regularization parameter. It is based
upon the active-set algorithm with a continuation strategy described in [1, 2].

FPC AS is a successor of FPC [3]. While FPC AS still performs shrinkage iterations and continuation
as its predecessor, most of the code has been rewritten. Compared to FPC, which has good performance
on large-scale problems with highly sparse solutions, FPC AS works better overall and much better on
certain difficult problems arising in compressed sensing, to name a few, those with sparse, but not highly
sparse, solutions and those whose solutions have both very large and very small nonzero components (i.e.,
the solutions have huge dynamic ranges). In the solutions of these problems, there are certain nonzero
components difficult to identify because they are either too small or have only slight advantage to represent
b over some of the others. FPC AS was designed with active set identification and sub-optimization to help
recover these components in the solutions.

2 Installation

To install the package, please follow the instructions the file “README.m”.

3 Usage

• The calling sequence of FPC AS at the MATLAB command line is

>> [x,Out] = FPC_AS(n,A,b,mu,M,opts);

The last two input arguments are optional. The input and output arguments are described below in
Subsections 3.2 and 3.3.

• A quick test:

1

>> cd FPC_AS_folder % replace FPC_AS_folder by the actual folder of FPC_AS

>> addpath(genpath(pwd));

>> one_run;

• Run a test on a set of difficult problems:

>> Test_Difficult_Problems;

3.1 Important notices

• FPC AS usually works better if the maximum eigenvalue of A⊤MA is close to, but no larger than,
1. If it is larger than 1, 1

2
||Ax − b||2M will dominate ‖x‖1, and this may affect the performance of

the algorithm. To make sure the maximum eigenvalue of A⊤MA is 1, please either scale the input
argument A by letting A ← θA for some appropriate θ < 1 or leave this to FPC AS by setting
opts.scale A = 1.

• The default values of certain solver options given below in Subsection 3.2 are set to solve problem (1.1)
to a high accuracy. However, it is sometimes NOT necessary to solve problem (1.1) very accurately,
for example, when ‘b’ is contaminated by noise and/or µ is relatively large. In these cases, the default
values will be over tight, so please relax them for better performance. For instance, for problems with
noisy ‘b’ and highly sparse solutions, one can use

opts.sub_mxitr = 10; opts.gtol = 1e-3; opts.gtol_scale_x = 1e-6;

The performance of FPC AS is quite sensitive to these options; see next subsections for their meanings.

3.2 Input arguments

• n: the dimension of x. The number of rows of A must equal n.

• A: either an explicit m×n matrix or an A operator object representing a matrix implicitly. When the
operations A*x and A.’*x can be computed much faster through certain means, it is recommend that
A be created as an A operator object, the source code of which is provided with the solver. To create
an A operator object, two functions or function handles for computing A*x and A.’*x, respectively,
must be given. Suppose they are AA and AT,

– AA: a function handle such that AA(x) = A*x,

– AT: a function handle such that AT(x) = A.’*x.

Then A can be created as an A operator by

A = A_operator(@(x) AA(x), @(x) AT(x));

An example for A being an implicit partial DCT matrix, which performs a complete DCT but returns
only the subset of the results corresponding to omega, is

function y=pdct(x,picks); y=dct(x); y=y(picks); end

function y=pidct(x,n,picks); y=zeros(n,1); y(picks)=x; y=idct(y); end

A = A_operator(@(x) pdct(x,omega), @(x) pidct(x,n,omega));

• b: an m× 1 vector

• mu: the ℓ1 regularization parameter µ

• M: either an m×m positive definite matrix or the empty matrix []. If M=[], FPC AS treats M =
I, which reduces the last term in (1.1) to 1

2
||Ax− b||2

2
.

2

• opts: a structure of options. It is an optional argument, so it can be ignored or set empty. Some of
the frequently used fields include:

– ’mxitr’: max number of iterations
default: 1000, valid range: [1, 100000]

– ’gtol’: termination criterion on “crit2”, the maximum norm of sub-gradient, where the meaning
of “crit2” is described in subsection 3.3
default: 1e-06, valid range: [0, 1]

– ’gtol scale x’: termination criterion on “crit2” scaled by max(norm(x), 1).
default: 1e-12, valid range: [0, 1]

– ’f value tol’: Tolerance on the optimal objective value. Stop if ψµ(x) less than or equal to
f value tol.
default: 0, valid range: [0, inf]

– ’sub mxitr’: max number of iterations in each sub-optimization
default: 80, valid range: [1, 100000]

– ’sub opt meth’: choice of sub-optimization methods
default: ’lbfgs’, valid values: {’lbfgs’,’lbfgsb’,’pcg’};

– ’scale A’: on/off switch for scaling the input matrix A so that the max of eigs(A*A.’) equals 1
default: 0, valid range: {0, 1}

– ’minK’: an estimate of the number of nonzero components in optimal solution
default: m/2, valid range: [1, n]

– ’zero’: a lower bound of minimal magnitude of nonzero components of optimal solution
default: 1e-08, valid range: [0, 1e+10]

– ’dynamic zero’: on/off switch for setting ‘zero’ dynamically
default: 0, valid range: {0, 1}

– ’xs’: optimal solution for non-algorithmic purposes such as progress display
default: empty vector, valid range: [-Inf, Inf]

– ’record’: print level, -1=quiet, 0=some output, 1=more output.
default: 0, valid range: {-1,0, 1}

– ’PrintOptions’: print options, 0=quiet, 1=output
default: 0, valid range: {0, 1}

To set a field of opts, do “opts.[fieldname] = value’.

A complete list of options are given in Appendix B.

3.3 Output arguments

• x: exit solution, which is the point obtained at last iteration

• Out: a structure having the following fields

– cpu: total CPU time

– exit: exit flag, 1=‘normal’, 10=‘max number of iterations reached’

– mesg: message of exit status

– itr: number of iterations taken

– f: exit function value, i.e., µ||x||1 + 1

2
||Ax− b||2M

– nrm1x: exit ℓ1 norm, i.e., ||x||1

– rNorm: exit l2 discrepancy term, i.e., ||Ax− b||M

– g: exit gradient of 1

2
||Ax− b||2M

3

– zero: final tolerance for zero, which is used for computing termination criteria

– crit2: violation of optimality, which is computed as

nz_x = x>Out.zero; z_xa = ~nz_x & (||g|-mu| > Out.zero);

T = union(nz_x, z_xa); crit2 = norm(g(T)-mu,’inf’);

Above nz x is the set of nonzero components whose magnitude of x are larger than Out.zero and
z xa is the set of nonzero components whose magnitude of |g| − µ are larger than Out.zero

– nnz x: number of the components in x whose magnitudes are larger than Out.zero

– nCont: number of continuation steps taken

– nSubOpt: number of sub-optimization problems solved

– nProdA, nProdAt: total number of operations A*x and A.’*x, respectively

– nfe, nge: number of A*x and A.’*x performed in shrinkage, respectively.

– nfe sub, nge sub: number of A*x and A.’*x performed in sub-optimization

– opts: options used

– The following fields are available if an optimal solution opts.xs is provided in the input. opts.xs
is compared to x after x is truncated in the way that xi = 0 if xi ≤ Out.zero. The comparison
results are given in

∗ sgn: number of nonzero components of x that have different sign compared to those of opts.xs,

∗ miss: number of (missed) components that are zero in x but nonzero in opts.xs

∗ over: number of (overshot) components that are nonzero in x but zero in opts.xs

They are computed as

jnt = union(nz_xs, nz_x); nz_xs = abs(xs) > opts.eps;

sgn = nnz(sign(x(jnt))~=sign(xs(jnt)));

miss = nnz(nz_xs&(~nz_x))

over = nnz(nz_x&(~nz_xs))

3.4 Auxiliary routines

• The operator “A operator” is defined in the subdirectory “prob gen\classes”

• A collection of test problems are stored in the subdirectory “prob gen”

– A random problem generator: “getData.m”. Please see the code for a description.

– Six problems in the “.mat” format with variables “n”,“Omega”, “b” and “xs”, where b=A*xs
and the matrix A is the partial DCT matrix whose rows are select from the DCT matrix
with indices “Omega”. The four problems: “CaltechTest1”, “CaltechTest2”, “CaltechTest3”
and “CaltechTest4” are provided by [6] and the two problems “Ameth6Xmeth2seed200” and
“Ameth6Xmeth6seed200” are from [2].

4 Examples

4.1 An explicit matrix A example

In the following example, an explicit matrix A and vector b are generated by the auxiliary function getData.m,
which is able to generate a variety of test data. A usage instruction is given in the file.

4

mu=1e-10;

seed = 200;

n = 2^9;

delta = 0.5; % m/n, m = round(delta*n)

rho = 0.3; % k/m, k = round(rho*m)

Ameth = 0; % see getData.m for codes

xmeth = 1; % " " " "

% set noise level

sigma1 = 0; %- standard deviation of signal noise (added to xs)

sigma2 = 0; %- standard deviation of meas. noise (added to b)

% problem size

m = round(delta*n); k = round(rho*m);

% initialization, get problem

[A,b,xs,xsn] = getData(m,n,k,Ameth,xmeth,sigma1,sigma2,seed); M = []; opts.xs = xs;

% call FPC_AS

opts.gtol = 1e-8;

[x, Out] = FPC_AS(n,A,b,mu,M,opts);

The recovered solution is depicted in Figure 1, and the screen output is

solver: /home/code/FPC_code/FPC_AS

Problem information: n=512, m=256, K=77

abs.err=1.37e-08, rel.err2=1.09e-08, nnz(x)=79, sgn=0, miss=0, over=2

time: 0.480s, crit2: 9.03e-10, nrm1x: 3.69e+01, ||Ax-b||: 1.18e-08

cost: num. of shrinkage: 68, num. of sub-opt: 7, num. of continuation: 6

num. of A*x from (total, shrink, sub-opt): (289, 69, 220), num. of A’*x: (296, 76, 220)

Message: sub-opt optimal

The above message indicates that the output solution, compared to the true sparse solution xs, has a absolute
error of 1.37e-8, a relative error of 1.09e-8, and has two extra nonzero entries. This solution was obtained
through 68 shrinkage iterations, 7 sub-optimization problems, and 6 continuation steps. The computation
was dominated by a total number of 289 and 296 operations in the form of A*x and A’*x, respectively.
Among the 289 A*x operations, 69 were performed in shrinkage iterations, and 220 in sub-optimization.
Among the 296 A’*x operations, 76 and 220 were performed in shrinkage iterations and sub-optimization,
respectively. The total CPU time was 0.48 second.

4.2 An A operator example

In this example, an implicit matrix A will generated as an A operator object. This implicit matrix A is
a partial DCT matrix, whose matrix-vector products in the form of A*x and A’*x are computed by the
function pdct. pdct(·,1,n,Omega) and pdct(·,2,n,Omega) computes A*· and A’*·, respectively. The data of
this test problem were provided in [6].

mu=1e-10;

% set up problem

load(’CaltechTest3’, ’b’,’Omega’,’n’,’xs’);

A = A_operator(@(x) pdct(x,1,n,Omega), @(x) pdct(x,2,n,Omega)); M = []; opts.xs = xs;

% call FPC_AS

opts.gtol = 1e-14;

[x, Out] = FPC_AS(n,A,b,mu,M,opts);

The recovered solution is depicted in Figure 2, and the screen output is

solver: /home/code/FPC_code/FPC_AS

Problem information: n=512, m=128, K=32

abs.err=5.85e-10, rel.err2=1.41e-09, nnz(x)=32, sgn=0, miss=0, over=0

5

Figure 1: recovered solution for the example in section 4.1. T is the support of the exact solution and T c is
the complement of T .

0 100 200 300 400 500 600

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
wn

 lo
g−

sc
ca

le

recovered solution

3.1e−04

x on T

x on Tc

x*

time: 0.460s, crit2: 9.33e-12, nrm1x: 6.20e+00, ||Ax-b||: 1.29e-09

cost: num. of shrinkage: 61, num. of sub-opt: 4, num. of continuation: 4

num. of A*x from (total, shrink, sub-opt): (235, 62, 173), num. of A’*x: (235, 62, 173)

Message: shrinkage optimal

5 License

FPC_AS

Copyright (C) 2008, Zaiwen Wen, Wotao Yin

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

A Preliminary Numerical Results

The purpose of this section is to demonstrate the recoverability of FPC AS on problems which might be
“pathological”. The first test set has four problems (“CaltechTest1”, “CaltechTest2”, “CaltechTest3” and

6

Figure 2: recovered solution for the example in section 4.2. T is the support of the exact solution and T c is
the complement of T .

0 100 200 300 400 500 600
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
wn

 lo
g−

sc
ca

le

recovered solution

1.0e−07

x on T

x on Tc

x*

“CaltechTest4”) from [6]. These problems are difficulty because the magnitudes of the components fall into a
big range, i.e., the largest nonzero magnitudes are significantly larger than the smallest nonzero magnitudes.
We summarize the dimension of these four problems and the magnitudes of the exact solutions in table 1.
In the last column of the table, we show the pairs of the magnitude of the exact solution and the number
of elements on this level. For example, in CaltechTest3, there are thirty-one components which have a
magnitudes of 0.2 and there is one component which has a small magnitude 10−6. The second test set has
two problems (“Ameth6Xmeth2seed200” and “Ameth6Xmeth6seed200”) which were encountered during our
development of FPC AS. Our numerical experience indicates that they might have solutions which are not
sparse at least for the l1-regularized problem (1.1), although we can not confirm our observation theoretically.
The coefficient matrix A here is the partial discrete cosine transform (DCT) matrix whosem rows were chosen
randomly from the n× n DCT matrix.

To give an idea of the relative performance of FPC AS on these problems, we did some comparison
with the solver l1eq pd (a new version, private communication) in the l1-magic software package [5] and
the solver spg bp in the software package SPGL1 (version 1.5) [4] for solving the basis pursuit problem

(A.1) (Basis Pursuit) min
x∈Rn

‖x‖1 subject to Ax = b.

We should pointed out that the comparison here is not meant to be a rigorous assessment of the performance
of these three classes of algorithms, as this would require very careful handling of subtle details such as
comparable termination criteria, and would be outside the scope of this paper. In addition, a comparison
might quickly be out of date since all the three software packages are continuously improved. The main
purpose of the comparison here is to encourage readers to consider FPC AS as a potential candidate when
looking for a practical solver for Compressed sensing. We set the termination criteria sufficiently small for
each solver. Specifically, we set the parameter pdtol = 10−8 for l1eq pd, the parameter bpTol = 10−10,
optTol = 10−10, decTol = 10−10 and iteration = 104 for spg bp and the parameter µ = 10−10 and
gtol = 10−14 for FPC AS. All other parameters of each solver were set to their default values. The
termination criteria are not direct comparable due to different formulation of the problems, but we believe
that on average the chosen criteria for FPC AS is tighter than those of the other two solvers. All codes were
written in MATLAB (Release 7.3.0) and all experiments were performed on a Dell Precision 670 workstation
with an Intel Xeon 3.4GHZ CPU and 6GB of RAM.

7

Table 1: Problem information

Problem n m K (magnitude, num. of elements on this level)
CaltechTest1 512 128 38 (105, 33), (1, 5)
CaltechTest2 512 128 37 (105, 32), (1, 5)
CaltechTest3 512 128 32 (0.2, 31), (10−6, 1)
CaltechTest4 512 102 26 (104, 13), (1, 12), (10−2, 1)

Ameth6Xmeth2seed200 1024 512 154 (1, 154)
Ameth6Xmeth6seed200 1024 512 154 (105, 154)

Table 2: Computational results for the difficult problems

Problem solver CPU(sec.) rel.err ‖x‖1 ‖r‖2 nMat (sgn,miss,over)
CaltechTest1 FPC AS 0.570 5.1e-12 3.3e+06 2.1e-09 627 (0, 0, 0)

l1eq pd 56.280 5.1e-12 3.3e+06 1.0e-10 91833 (0, 0, 0)
spg bp 23.070 3.9e-06 3.3e+06 4.3e-03 29667 (0, 0, 32)

CaltechTest2 FPC AS 0.380 7.1e-14 3.2e+06 1.6e-09 417 (0, 0, 0)
l1eq pd 34.720 7.2e-14 3.2e+06 9.6e-11 56177 (0, 0, 0)
spg bp 20.820 1.0e-09 3.2e+06 2.2e-05 25775 (0, 0, 0)

CaltechTest3 FPC AS 0.460 1.4e-09 6.2e+00 1.3e-09 471 (0, 0, 0)
l1eq pd 7.430 2.5e-09 6.2e+00 1.5e-15 11951 (0, 0, 0)
spg bp 13.520 4.3e-09 6.2e+00 1.0e-10 17250 (0, 0, 0)

CaltechTest4 FPC AS 0.680 7.6e-14 1.3e+05 1.3e-09 817 (0, 0, 0)
l1eq pd 20.700 7.1e-14 1.3e+05 5.5e-12 32675 (0, 0, 0)
spg bp 19.350 2.6e-12 1.3e+05 9.8e-11 25142 (0, 0, 0)

Ameth6Xmeth2seed200 FPC AS 0.980 6.6e-10 1.5e+02 2.2e-09 681 (0, 0, 0)
l1eq pd 38.090 5.5e-01 1.5e+02 4.5e-06 47451 (0, 3, 207)
spg bp 30.950 5.5e-01 1.5e+02 3.4e-03 29528 (0, 3, 205)

Ameth6Xmeth6seed200 FPC AS 0.600 7.7e-15 1.5e+07 2.8e-09 525 (0, 0, 0)
l1eq pd 56.690 1.0e-00 4.1e+03 7.8e+05 69707 (0, 154, 0)
spg bp 31.300 5.5e-01 1.5e+07 3.5e+02 29549 (0, 3, 206)

We introduce some symbols used in the tables of the following numerical reports. Here, “CPU” denotes
CPU time measured in seconds, “rel.err” denotes the relative error between the recovered solution x and

the exact sparsest solution x̄, i.e., rel.err = ‖xk−x̄‖
‖x̄‖ , ‖x‖1 denotes the l1-norm of the recovered solution x,

‖r‖2 := ‖Ax − b‖ denotes the l2-norm of the residual, and nMat denotes the total number matrix-vector
products with A and A⊤. Since a truncation of the recovered solution is useful in practice, we compute three
numbers “sgn”, “miss” and “over” to measure the recoverability of the truncated solution. First, we set a
thresholding value ξ = 0.1|x̄k|, where x̄k has the smallest magnitude among all the nonzero components of
x̄. We define a vector y with yi = xi if |xi| ≥ ξ and yi = 0, otherwise. Then “sgn” denotes the number of
components of y which have different signs compared to x̄ in the union of the supports of y and x̄, “miss”
denotes the number of zero components of y which are nonzero in x̄, and “over” denotes the number of
nonzero components of y which are zero in x̄. The values of “sgn”, “miss” and “over” should be zero if x is
a good approximation to x̄.

A summary of the computational results for all of the four problems is presented in Table 2. From the
table, the superiority of FPC AS is obvious. For the last two problems, only FPC AS was able to recover
the solution successfully. Both FPC AS and l1eq pd were able to achieve very small relative error “rel.err”
and to obtain small residual ‖r‖ on the first four problems, which implies that these two solvers are able to
recover the magnitudes of the solution successfully. The signs of the sparsest solution were also identified
indicated by the pairs of “(sgn,miss,over)”. However, FPC AS is much cheaper than l1eq pd and spg bp

in terms of CPU time and the total number of matrix-vector products. Although spg bp gave similar value
on the l1-norm ‖x‖1 as the other two solvers on “CaltechTest1”, some components should be zero were not
eliminated. Adjusting other parameters of spg bp might give better results, but it is outside the scope of this
paper. Finally, we depicted the recovered solutions from all of the three solvers for “Ameth6Xmeth2seed200”
in Figure 3.

8

Figure 3: Recovered solutions of “Ameth6Xmeth2seed200”

0 200 400 600 800 1000 1200

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

recovered solution

Level: 1.0e−03

x on T

x on Tc

x*

(a) FPC AS

0 200 400 600 800 1000 1200
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

recovered solution

Level: 1.0e−03

x on T

x on Tc

x*

(b) l1eq pd

0 200 400 600 800 1000 1200

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

index

ab
so

lu
te

 v
al

ue
 o

f e
nt

ry
, s

ho
w

n
lo

g−
sc

ca
le

recovered solution

Level: 1.0e−03Level: 1.0e−03

x on T

x on Tc

x*

Best

(c) spg bp

B Options of FPC AS

The available options are:

• ’x0’: initial solution
default: , valid range: [-Inf, Inf]

• ’init’: methods of initialization, integer
default: 2, valid range: {0,1,2}

• ’xs’: exact solution whose purpose is only for comparison
default: , valid range: [-Inf, Inf]

• ’tol eig’: tolerance for eigs
default: 0.0001, valid range: [0, 1]

• ’scale A’: scale the matrix A so that max of eigs(A*AT) equals 1, integer
default: 0, valid range: {0, 1}

• ’eigs mxitr’: max number of iterations for eigs(A*AT), integer
default: 20, valid range: [1, 100]

• ’eps’: machine accuarcy
default: 1e-16, valid range: [0, 1]

• ’zero’: minimal magnitude of x
default: 1e-08, valid range: [0, 1e+10]

• ’dynamic zero’: set the thresholding level dynamically or not, integer
default: 0, valid range: {0, 1}

• ’minK’: estimate of the number of the nonzero components of the exact solution, integer
default: m/2, valid range: {1, n}

• ’tauD’: a parameter for shrinkage
default: min(1.999,-1.665*m/n + 2.665), valid range: [0, 100000]

• ’tau min’: minimal tau
default: 0.0001, valid range: [0, 100000]

• ’tau max’: minimal tau
default: 1000, valid range: [0, 100000]

• ’mxitr’: max number of iterations, integer
default: 1000, valid range: [1, 100000]

9

• ’gtol’: Tolerance on norm of sub-gradient
default: 1e-06, valid range: [0, 1]

• ’gtol scale x’: Tolerance on norm of sub-gradient
default: 1e-12, valid range: [0, 1]

• ’f rel tol’: Tolerance on the relative changes of function value
default: 1e-12, valid range: [0, 1]

• ’f value tol’: Tolerance on the optimal objective value. Stop if ψµ(x) less than or equal to f value tol.
default: 0, valid range: [0, inf]

• ’ls mxitr’: max number of iterations of of line search subroutine, integer
default: 5, valid range: [2, 100]

• ’gamma’: a parameter for the nonmonotone line search
default: 0.85, valid range: [0, 1]

• ’c’: a parameter for Armijo condition
default: 0.001, valid range: [0, 1]

• ’beta’: a parameter for decreasing the step size in the nonmonotone line search
default: 0.5, valid range: [0, 1]

• ’eta’: a parameter for decreasing mu
default: 0.5, valid range: [0, 1]

• ’eta rho’: a parameter for decreasing eta
default: 0.5, valid range: [0, 1]

• ’eta min’: minimal eta
default: 0.001, valid range: [0, 1]

• ’eta max’: maximal eta
default: 0.8, valid range: [0, 1]

• ’max itr mu’: control the decreasing of eta, iteration number between the changes of mu, integer
default: 3, valid range: [1, 100]

• ’sub mxitr’: max number of iterations for doing sub-optimization, integer
default: 80, valid range: [1, 100000]

• ’lbfgs m’: storage number of L-BFGS, integer
default: 5, valid range: [1, 100]

• ’kappa g d’: tolerance for checking whether do sub-optimization or not
default: 10, valid range: [1, 1000]

• ’kappa rho’: a parameter for increasing kappa g d
default: 10, valid range: [1, 1000]

• ’tol start sub’: Tolerance of starting sub-optimization
default: 1e-06, valid range: [0, 1]

• ’min itr shrink’: min number of iterations between two sub-optimization, integer
default: 3, valid range: [1, 1000]

• ’max itr shrink’: max number of iterations between two sub-optimization, integer
default: 20, valid range: [1, 1000]

• ’record’: print information, -1=quiet, 0=some output, 1=more output. integer
default: 0, valid range: {-1,0,1}

10

• ’PrintOptions’: print options, integer
default: 0, valid range: {0, 1}

References

[1] Zaiwen Wen, Wotao Yin, et al. On the convergence of an active set method for l1 minimization. working
paper, 2008.

[2] Zaiwen Wen, Wotao Yin, et al. An algorithm for l1 minimization using shrinkage and subspace opti-
mization. working paper, 2008.

[3] Elain Hale, Wotao Yin, and Yin Zhang. FPC: A MATLAB solver for minimizing ‖x‖1 + p‖Ax − b‖2
2
.

http://www.caam.rice.edu/~optimization/L1/fpc/, 2008.

[4] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, June
2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[5] E.Candes, J.Romberg, and S. Becker. l1-magic, 2007. http://www.acm.caltech.edu/l1magic.

[6] Stephen Becker and Emmanuel Candes. Some test problems for compressed sensing. private communi-
cation, 2008.

11

